An asynchronous parallel explicit solver based on scaled boundary finite element method using octree meshes

被引:21
|
作者
Zhang, Junqi [1 ]
Zhao, Mi [1 ]
Eisentraeger, Sascha [2 ]
Du, Xiuli [1 ]
Song, Chongmin [3 ]
机构
[1] Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing 100124, Peoples R China
[2] Tech Univ Darmstadt, Computat Mech Grp, Inst Mech, D-64289 Darmstadt, Hessen, Germany
[3] Univ New South Wales, Sch Civil & Environm Engn, Sydney, NSW 2052, Australia
基金
北京市自然科学基金;
关键词
Asynchronous solver; Explicit dynamics; Parallel computing; Octree mesh; Scaled boundary finite element method; Polyhedral finite elements; TO-NODE SCHEME; TRANSIENT ANALYSIS; UNBOUNDED-DOMAINS; TIME INTEGRATION; WAVE-PROPAGATION; STABILITY; QUADTREE; FORMULATION; SIMULATION; ALGORITHM;
D O I
10.1016/j.cma.2022.115653
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Explicit time integration methods are an integral part of solving structural dynamics problems such as the propagation of elastic and acoustic waves, impact scenarios including crash tests and many more. One common limitation of this class of time integrators is, however, their conditional stability, meaning that highly distorted, small, or stiff finite elements typically govern the critical time step size. That is to say, even a small number of such elements will result in a significantly decrease of the feasible time step, which in turn drastically increases the computational costs of solving the semi-discrete equations of motion. This is especially true for non-uniform and unstructured meshes. Therefore, an asynchronous explicit solver in parallel is proposed in this article. The idea is to assign different time step sizes to different parts of the mesh, such that the overall computational effort is minimized. To improve the performance of the proposed solver, it is combined with a sophisticated octree meshing framework, where the balanced octrees are used, meaning that the ratio of the element sizes of adjacent elements cannot exceed a value of two. Thus, the critical time step of each element can be estimated straightforwardly. To avoid issues with hanging nodes, a special polyhedral element formulation, the scaled boundary finite element method, is employed. Since there are only a limited number of cell patterns in a balanced octree, the stiffness and mass matrices are pre-computed, significantly reducing the computational cost. Moreover, exploiting an element-by-element technique, the assembly of global stiffness matrices can be avoided. The main advantage of the described methodology is that the asynchronous explicit solver can be easily implemented in a high-performance computing environment. By means of several numerical examples, the accuracy and efficiency of the proposed method are demonstrated, as well as its versatility in handling complex engineering problems. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:29
相关论文
共 50 条
  • [21] Dynamic fracture simulations using the scaled boundary finite element method on hybrid polygon-quadtree meshes
    Ooi, Ean Tat
    Natarajan, Sundararajan
    Song, Chongmin
    Ooi, Ean Hin
    INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2016, 90 : 154 - 164
  • [22] Modelling dynamic crack propagation using the scaled boundary finite element method
    Ooi, E. T.
    Yang, Z. J.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2011, 88 (04) : 329 - 349
  • [23] Dynamic crack face contact and propagation simulation based on the scaled boundary finite element method
    Zhang, Peng
    Du, Chengbin
    Zhao, Wenhu
    Sun, Liguo
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 385
  • [24] Shape optimization of acoustic devices using the Scaled Boundary Finite Element Method
    Khajah, Tahsin
    Liu, Lei
    Song, Chongmin
    Gravenkamp, Hauke
    WAVE MOTION, 2021, 104
  • [25] A high-order approach for modelling transient wave propagation problems using the scaled boundary finite element method
    Chen, D.
    Birk, C.
    Song, C.
    Du, C.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2014, 97 (13) : 937 - 959
  • [26] A stochastic scaled boundary finite element method
    Long, X. Y.
    Jiang, C.
    Yang, C.
    Han, X.
    Gao, W.
    Liu, J.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2016, 308 : 23 - 46
  • [27] An adaptive scaled boundary finite element method for contact analysis
    Hirshikesh
    Pramod, A. L. N.
    Ooi, Ean Tat
    Song, Chongmin
    Natarajan, Sundararajan
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2021, 86
  • [28] Isogeometric analysis enhanced by the scaled boundary finite element method
    Natarajan, Sundararajan
    Wang, JunChao
    Song, Chongmin
    Birk, Carolin
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 283 : 733 - 762
  • [29] A numerical approach for the computation of dispersion relations for plate structures using the Scaled Boundary Finite Element Method
    Gravenkamp, Hauke
    Song, Chongmin
    Prager, Jens
    JOURNAL OF SOUND AND VIBRATION, 2012, 331 (11) : 2543 - 2557
  • [30] NONLINEAR SITE RESPONSE ANALYSIS BY COUPLING SCALED BOUNDARY FINITE ELEMENT METHOD AND FINITE ELEMENT METHOD
    Barghi Kherzeloo, Ali
    Hataf, Nader
    ACTA GEODYNAMICA ET GEOMATERIALIA, 2020, 17 (04): : 397 - 412