Multi-affinity and Phase Sensitivity of Strange Nonchaotic Attractors

被引:1
|
作者
Takahashi, Noi [1 ]
Chawanya, Tsuyoshi [1 ]
Aizawa, Yoji [2 ]
机构
[1] Osaka Univ, Grad Sch Informat Sci & Technol, Suita, Osaka 5650871, Japan
[2] Waseda Univ, Adv Sch Sci & Engn, Dept Appl Phys, Shinjuku Ku, Tokyo 1698555, Japan
关键词
FORCED SYSTEMS;
D O I
10.7566/JPSJ.87.024003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the multi-affinity and phase sensitivity of strange nonchaotic attractors (SNAs) in quasiperiodically driven systems and show that the q-dependent scaling exponent eta(q), which determines the scaling of the qth correlation function of the height differences of the graph of SNAs, exhibits phase-transition-like behaviors. Furthermore, we derive hyperscaling relations, which connect two kinds of exponents characterizing the phase sensitivity and multi-affinity. We point out that these hyperscaling laws seem to be universal in SNAs.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Strange nonchaotic attractors
    Prasad, A
    Negi, SS
    Ramaswamy, R
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2001, 11 (02): : 291 - 309
  • [2] THE BIRTH OF STRANGE NONCHAOTIC ATTRACTORS
    HEAGY, JF
    HAMMEL, SM
    PHYSICA D, 1994, 70 (1-2): : 140 - 153
  • [3] A plethora of strange nonchaotic attractors
    Negi, SS
    Ramaswamy, R
    PRAMANA-JOURNAL OF PHYSICS, 2001, 56 (01): : 47 - 56
  • [4] CHARACTERIZING STRANGE NONCHAOTIC ATTRACTORS
    PIKOVSKY, AS
    FEUDEL, U
    CHAOS, 1995, 5 (01) : 253 - 260
  • [5] A plethora of strange nonchaotic attractors
    Surendra Singh Negi
    Ramakrishna Ramaswamy
    Pramana, 2001, 56 : 47 - 56
  • [6] DIMENSIONS OF STRANGE NONCHAOTIC ATTRACTORS
    DING, MZ
    GREBOGI, C
    OTT, E
    PHYSICS LETTERS A, 1989, 137 (4-5) : 167 - 172
  • [7] Synchronization of strange nonchaotic attractors
    Ramaswamy, R
    PHYSICAL REVIEW E, 1997, 56 (06) : 7294 - 7296
  • [8] Strange nonchaotic attractors for computation
    Aravindh, M. Sathish
    Venkatesan, A.
    Lakshmanan, M.
    PHYSICAL REVIEW E, 2018, 97 (05)
  • [9] Bifurcation to strange nonchaotic attractors
    Yalcinkaya, T
    Lai, YC
    PHYSICAL REVIEW E, 1997, 56 (02): : 1623 - 1630
  • [10] Hidden Strange Nonchaotic Attractors
    Danca, Marius-F.
    Kuznetsov, Nikolay
    MATHEMATICS, 2021, 9 (06)