CONSENSUAL CLUSTERING FOR LAND COVER MAPPING

被引:0
|
作者
Campedel, Marine [1 ]
Kyrgyzov, Ivan [1 ]
机构
[1] TELECOM ParisTech, CNRS LTCI, Inst MINES TELECOM, F-75013 Paris, France
来源
2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) | 2012年
关键词
land cover classification; consensual clustering; mining tool;
D O I
10.1109/IGARSS.2012.6351977
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this article we propose to illustrate the ability of consensual clustering to provide mining tools in the context of land cover unsupervised classification. The proposed algorithm is based on individual co-association matrices related to several input clusterings that are combined using a Mean Shift optimization procedure. This provides valuable clusters in terms of interpretation and also information about the data to be clustered, which could be useful to discriminate between easily classified pixels and the other ones, requiring human expertise. The interest of our approach is demonstrated using the Boumerdes dataset provided by SERTIT and CNES, in the context of the 2003 earthquake.
引用
收藏
页码:7294 / 7297
页数:4
相关论文
共 50 条
  • [41] Toward Spatio-Spectral Analysis of Sentinel-2 Time Series Data for Land Cover Mapping
    Eudes Gbodjo, Yawogan Jean
    Ienco, Dino
    Leroux, Louise
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (02) : 307 - 311
  • [42] Attentive Spatial Temporal Graph CNN for Land Cover Mapping From Multi Temporal Remote Sensing Data
    Censi, Alessandro Michele
    Ienco, Dino
    Gbodjo, Yawogan Jean Eudes
    Pensa, Ruggero Gaetano
    Interdonato, Roberto
    Gaetano, Raffaele
    IEEE ACCESS, 2021, 9 : 23070 - 23082
  • [43] Undercomplete Learned Dictionaries for Land Cover Classification in Multispectral Imagery of Arctic Landscapes using CoSA: Clustering of Sparse Approximations
    Moody, Daniela I.
    Brumby, Steven P.
    Rowland, Joel C.
    Gangodagamage, Chandana
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XIX, 2013, 8743
  • [44] Land Cover Classification Using Interval Type-2 Fuzzy Clustering for Multi-spectral Satellite Imagery
    Long Thanh Ngo
    Dzung Dinh Nguyen
    PROCEEDINGS 2012 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2012, : 2371 - 2376
  • [45] Research on regional land cover mapping of the Yangtze River Delta using MODIS 250m data
    Xu, Yongming
    Wei, Ming
    Liu, Yonghong
    Lv, Jingiing
    REMOTE SENSING AND GIS DATA PROCESSING AND APPLICATIONS; AND INNOVATIVE MULTISPECTRAL TECHNOLOGY AND APPLICATIONS, PTS 1 AND 2, 2007, 6790
  • [46] Interval Type-2 Fuzzy C-Means Clustering with Spatial Information for Land-Cover Classification
    Sinh Dinh Mai
    Long Thanh Ngo
    INTELLIGENT INFORMATION AND DATABASE SYSTEMS, PT I, 2015, 9011 : 387 - 397
  • [47] Application and evaluation of topographic correction methods to improve land cover mapping using object-based classification
    Moreira, Eder Paulo
    Valeriano, Marcio Morisson
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2014, 32 : 208 - 217
  • [48] Very Deep Convolutional Neural Networks for Complex Land Cover Mapping Using Multispectral Remote Sensing Imagery
    Mahdianpari, Masoud
    Salehi, Bahram
    Rezaee, Mohammad
    Mohammadimanesh, Fariba
    Zhang, Yun
    REMOTE SENSING, 2018, 10 (07)
  • [49] Targeted Land-Cover Classification
    Marconcini, Mattia
    Fernandez-Prieto, Diego
    Buchholz, Tim
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (07): : 4173 - 4193
  • [50] Multiple kernel collaborative fuzzy clustering algorithm with weighted super-pixels for satellite image land-cover classification
    Trong Hop Dang
    Dinh Sinh Mai
    Long Thanh Ngo
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2019, 85 : 85 - 98