Existence and smoothness of solutions of a singular differential equation of hyperbolic type

被引:4
作者
Muratbekov, M. B. [1 ]
Bayandiyev, Ye. N. [1 ]
机构
[1] MKh Dulaty Taraz Reg Univ, Taraz, Kazakhstan
来源
BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS | 2022年 / 107卷 / 03期
关键词
resolvent; hyperbolic type equation; maximal regularity; unbounded domain; OPERATORS; SEPARABILITY; RESOLVENT;
D O I
10.31489/2022M3/98-104
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper investigates the question of the existence of solutions to the semiperiodic Dirichlet problem for a class of singular differential equations of hyperbolic type. The problem of smoothness of solutions is also considered, i.e., maximum regularity of solutions. Such a problem will be interesting when the coefficients are strongly growing functions at infinity. For the first time, a weighted coercive estimate was obtained for solutions to a differential equation of hyperbolic type with strongly growing coefficients.
引用
收藏
页码:98 / 104
页数:7
相关论文
共 26 条
[1]  
Adamar Zh., 1978, ZADACHA KOSHI LINEIN
[2]  
Asanova A. T., 2003, DOKLADY RAN, V391, P295
[3]  
Bitsadze A.V., 1981, Some Classes of Partial Differential Equations
[4]  
Filinovskii A.V., 2014, J MATH SCI-U TOKYO, V197, P435
[5]   SYMMETRIC HYPERBOLIC LINEAR DIFFERENTIAL EQUATIONS [J].
FRIEDRICHS, KO .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1954, 7 (02) :345-392
[6]  
GARDING L, 1951, ACTA MATH-DJURSHOLM, V85, P1
[7]  
Kalmenov T.S., 2013, K TEORII NACHALNO KR
[8]  
Kato T., 1972, TEORIIA VOZMUSHCHENI
[9]  
KIGURADZE TI, 1993, DIFF EQUAT+, V29, P231
[10]  
Ladyzhenskaya O.A., 1951, DOKL ACAD SCI USSR, V97, P395