A Preconditioned Gauss-Seidel Iterative Method for Linear Complementarity Problem in Intelligent Materials System

被引:1
作者
Duan Banxiang [1 ]
Zeng Wenying [1 ]
Zhu Xiaoping [1 ]
机构
[1] GuangDong Prov Inst Tech Personnel, Comp Engn Tech Coll, Zhuhai 519090, Guangdong, Peoples R China
来源
MECHANICAL PROPERTIES OF MATERIALS AND INFORMATION TECHNOLOGY | 2012年 / 340卷
关键词
Linear complementarity problem; H-matrix; PGSI method; preconditioned matrix; convergence; CONVERGENCE;
D O I
10.4028/www.scientific.net/AMR.340.3
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper, the authors first set up new preconditioned Gauss-Seidel iterative method for solving the linear complementarity problem, whose preconditioned matrix I + S-alpha(beta) is introduced. Then certain elementary operations row are performed on system matrix A before applying the Gauss-Seidel iterative method. Moreover the sufficient conditions for guaranteeing the convergence of the new preconditioned Gauss-Seidel iterative method are presented. Lastly we report some computational results with the proposed method.
引用
收藏
页码:3 / 8
页数:6
相关论文
共 7 条
[1]   On the monotone convergence of matrix multisplitting relaxation methods for the linear complementarity problem [J].
Bai, ZZ .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1998, 18 (04) :509-518
[2]  
Berman A, 1979, NONNEGATIVE MATRIX M
[3]  
Cottle R.W., 1992, The Linear Complementarity Problem
[4]   CONVERGENCE OF RELAXED PARALLEL MULTISPLITTING METHODS [J].
FROMMER, A ;
MAYER, G .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1989, 119 :141-152
[5]   H-SPLITTINGS AND 2-STAGE ITERATIVE METHODS [J].
FROMMER, A ;
SZYLD, DB .
NUMERISCHE MATHEMATIK, 1992, 63 (03) :345-356
[7]  
[沈海龙 Shen Hailong], 2009, [数值计算与计算机应用, Journal on Numerical Methods and Computer Applications], V30, P266