Asymptotic Stability of Large-amplitude Oscillations in Systems with Hysteresis

被引:7
作者
Rachinskii, Dmitrii [1 ]
机构
[1] Russian Acad Sci, Inst Informat Transmiss Problems, Moscow 101447, Russia
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 1999年 / 6卷 / 03期
关键词
Nonlinear System; Periodic Solution; Asymptotic Stability; Critical Parameter; Linear Part;
D O I
10.1007/s000300050076
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study depending on a parameter periodic systems with the main linear part and a hysteresis nonlinearity; the linearized at in infinity system has a one-dimensional subspace of periodic solutions for the critical parameter value. We prove theorems on a number, localization, and asymptotic stability of large-amplitude periodic solutions for the nonlinear system.
引用
收藏
页码:267 / 288
页数:22
相关论文
共 10 条
[1]  
[Anonymous], RUSS ACAD SCI DOKL M
[2]  
[Anonymous], RUSS ACAD SCI DOKL M
[3]  
[Anonymous], 1996, HYSTERESIS CONVEXITY
[4]   Nonlinear resonance in systems with hysteresis [J].
Bliman, PA ;
Krasnoselskii, AM ;
Sorine, M ;
Vladimirov, AA .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1996, 27 (05) :561-577
[5]  
Brokate M., 1996, Hysteresis and phase transitions
[6]  
Krasnosel'skii M.A, 1989, SYSTEMS HYSTERESIS, DOI DOI 10.1007/978-3-642-61302-9
[7]  
Krasnoselskii M. A., 1984, GEOMETRICAL METHODS
[8]  
Mayergoyz I. D, 1991, MATH MODELS HYSTERES
[9]   About the magnetic aftereffect. [J].
Preisach, F. .
ZEITSCHRIFT FUR PHYSIK, 1935, 94 (5-6) :277-302
[10]  
Visintin A., 1994, FF ERENTIAL MODELS H