ACCELERATED SPATIAL APPROXIMATIONS FOR TIME DISCRETIZED STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS

被引:5
作者
Hall, Eric Joseph [1 ]
机构
[1] Univ Edinburgh, Sch Math, Edinburgh EH9 3JZ, Midlothian, Scotland
关键词
Richardson's method; finite differences; linear stochastic partial differential equations of parabolic type; Cauchy problem; NUMERICAL SCHEMES; CAUCHY-PROBLEM; CONVERGENCE; EXPANSION; ERROR;
D O I
10.1137/12086412X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The present article investigates the convergence of a class of space-time discretization schemes for the Cauchy problem for linear parabolic stochastic partial differential equations defined on the whole space. Sufficient conditions are given for accelerating the convergence of the scheme with respect to the spatial approximation to higher order accuracy by an application of Richardson's method. This work extends the results of Gyongy and Krylov [SIAM J. Math. Anal., 42 (2010), pp. 2275-2296] to schemes that discretize in time as well as space.
引用
收藏
页码:3162 / 3185
页数:24
相关论文
共 23 条
[1]  
Bain A, 2009, STOCH MOD APPL PROBA, V60, P1, DOI 10.1007/978-0-387-76896-0_1
[2]   Convergence acceleration during the 20th century [J].
Brezinski, C .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 122 (1-2) :1-21
[3]  
Davie AM, 2001, MATH COMPUT, V70, P121, DOI 10.1090/S0025-5718-00-01224-2
[4]  
Gyöngy I, 2011, MATH COMPUT, V80, P1431
[5]   ACCELERATED FINITE DIFFERENCE SCHEMES FOR LINEAR STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS IN THE WHOLE SPACE [J].
Gyoengy, Istvan ;
Krylov, Nicolai .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2010, 42 (05) :2275-2296
[6]   Rate of Convergence of Space Time Approximations for Stochastic Evolution Equations [J].
Gyoengy, Istvan ;
Millet, Annie .
POTENTIAL ANALYSIS, 2009, 30 (01) :29-64
[7]   On discretization schemes for stochastic evolution equations [J].
Gyöngy, I ;
Millet, A .
POTENTIAL ANALYSIS, 2005, 23 (02) :99-134
[8]   SURVEY OF EXTRAPOLATION PROCESSES IN NUMERICAL ANALYSIS [J].
JOYCE, DC .
SIAM REVIEW, 1971, 13 (04) :435-+
[9]   EXTRAPOLATION METHODS FOR THE WEAK APPROXIMATION OF ITO DIFFUSIONS [J].
KLOEDEN, PE ;
PLATEN, E ;
HOFMANN, N .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995, 32 (05) :1519-1534
[10]  
Krylov N.V., 1999, MATH SURVEYS MONOGR, V64