A triboelectric nanogenerator energy harvesting system based on load-aware control for input power from 2.4 μW to 15.6 μW

被引:17
作者
Rawy, Karim [1 ]
Sharma, Ruchi [1 ]
Yoon, Hong-Joon [2 ]
Khan, Usman [2 ]
Kim, Sang-Woo [2 ]
Kim, Tony Tae-Hyoung [1 ]
机构
[1] Nanyang Technol Univ NTU, Sch Elect & Elect Engn, 50 Nanyang Ave, Singapore 639798, Singapore
[2] Sungkyunkwan Univ SKKU, Sch Adv Mat Sci & Engn, Suwon 440746, South Korea
关键词
Energy harvesting; Maximum power point tracking (MPPT); Power conversion efficiency; Power management circuits; Triboelectric nanogenerator (TENG); MPPT; EFFICIENCY;
D O I
10.1016/j.nanoen.2020.104839
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper presents a triboelectric nanogenerator (TENG) energy harvesting system for ultra-low power applications. We propose a load-aware control algorithm to improve the power conversion efficiency as well as the voltage conversion efficiency. The control algorithm minimizes the conduction and switching losses within a switched capacitor charge pump (SCCP) by modulating its switching frequency based on the load condition. Furthermore, a hysteresis input regulation control was developed for preventing breakdown. The overall system was optimized by utilizing a compact spice model from the physical mechanisms of the employed TENG. The fabricated test chip in 65-nm process technology provides a regulated output voltage of 1.2 V with power conversion efficiency of 88% at 30 Hz excitation frequency when the TENG output voltage is 2.5 V.
引用
收藏
页数:8
相关论文
共 24 条
[11]  
Park I, 2018, ISSCC DIG TECH PAP I, P146, DOI 10.1109/ISSCC.2018.8310226
[12]   A Self-Adaptive Time-Based MPPT With 96.2% Tracking Efficiency and a Wide Tracking Range of 10 μA to 1 mA for IoT Applications [J].
Rawy, Karim ;
Kalathiparambil, Felix ;
Maurath, Dominic ;
Kim, Tony Tae-Hyoung .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2017, 64 (09) :2334-2345
[13]  
Rawy K, 2016, PROC EUR SOLID-STATE, P503, DOI 10.1109/ESSCIRC.2016.7598351
[14]   Boosting Power-Generating Performance of Triboelectric Nanogenerators via Artificial Control of Ferroelectric Polarization and Dielectric Properties [J].
Seung, Wanchul ;
Yoon, Hong-Joon ;
Kim, Tae Yun ;
Ryu, Hanjun ;
Kim, Jihye ;
Lee, Ju-Hyuck ;
Lee, Jeong Hwan ;
Kim, Sanghyun ;
Park, Yun Kwon ;
Park, Young Jun ;
Kim, Sang-Woo .
ADVANCED ENERGY MATERIALS, 2017, 7 (02)
[15]   Self-Powered 30 μW to 10 mW Piezoelectric Energy Harvesting System With 9.09 ms/V Maximum Power Point Tracking Time [J].
Shim, Minseob ;
Kim, Jungmoon ;
Jeong, Junwon ;
Park, Sejin ;
Kim, Chulwoo .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2015, 50 (10) :2367-2379
[16]  
Stanzione S., 2015, IEEE INT SOL STAT CI, P1
[17]  
Stanzione S, 2013, ISSCC DIG TECH PAP I, V56, P74, DOI 10.1109/ISSCC.2013.6487643
[18]   Air-Flow-Driven Triboelectric Nanogenerators for Self-Powered Real-Time Respiratory Monitoring [J].
Wang, Meng ;
Zhang, Jiahao ;
Tang, Yingjie ;
Li, Jun ;
Zhang, Baosen ;
Liang, Erjun ;
Mao, Yanchao ;
Wang, Xudong .
ACS NANO, 2018, 12 (06) :6156-6162
[19]   Triboelectric Nanogenerators as New Energy Technology for Self-Powered Systems and as Active Mechanical and Chemical Sensors [J].
Wang, Zhong Lin .
ACS NANO, 2013, 7 (11) :9533-9557
[20]   DALiuGE: A graph execution framework for harnessing the astronomical data deluge [J].
Wu, C. ;
Tobar, R. ;
Vinsen, K. ;
Wicenec, A. ;
Pallot, D. ;
Lao, B. ;
Wang, R. ;
An, T. ;
Boulton, M. ;
Cooper, I. ;
Dodson, R. ;
Dolensky, M. ;
Mei, Y. ;
Wang, F. .
ASTRONOMY AND COMPUTING, 2017, 20 :1-15