Global Existence and Blow-Up for the Fractional p-Laplacian with Logarithmic Nonlinearity

被引:23
|
作者
Boudjeriou, Tahir [1 ]
机构
[1] Univ Bejaia, Lab Appl Math, Dept Math, Fac Exact Sci, Bejaia 6000, Algeria
关键词
Fractional p-Laplacian; global existence; blow-up; potential well; 35K59; 35K55; 35B40; SEMILINEAR HEAT-EQUATION;
D O I
10.1007/s00009-020-01584-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the following Dirichlet problem for a parabolic equation involving fractional p-Laplacian with logarithmic nonlinearity <disp-formula id="Equ85"><mml:mtable><mml:mtr><mml:mtd columnalign="right"><mml:mfenced open="{"><mml:mtable><mml:mtr><mml:mtd columnalign="left">ut+(-Delta )ps</mml:msubsup>u+|u|p-2u=|u|p-2ulog(|u|)</mml:mtd><mml:mtd columnalign="left">in<mml:mspace width="4pt"></mml:mspace></mml:mtd><mml:mtd>Omega,<mml:mspace width="0.277778em"></mml:mspace>t>0,</mml:mtd></mml:mtr><mml:mtr><mml:mtd columnalign="left">u=0</mml:mtd><mml:mtd columnalign="left">in</mml:mtd><mml:mtd>RN\Omega,<mml:mspace width="0.277778em"></mml:mspace>t>0,</mml:mtd></mml:mtr><mml:mtr><mml:mtd columnalign="left">u(x,0)=<mml:msub>u0(x),</mml:mtd><mml:mtd columnalign="left">in</mml:mtd><mml:mtd>Omega,</mml:mtd></mml:mtr></mml:mtable></mml:mfenced></mml:mtd></mml:mtr></mml:mtable><graphic position="anchor" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="9_2020_1584_Article_Equ85.gif"></graphic></disp-formula>where Omega subset of RN<mml:mspace width="0.166667em"></mml:mspace>(N >= 1) is a bounded domain with Lipschitz boundary and 2 <= p<<infinity>. The local existence will be done using the Galerkin approximations. By combining the potential well theory with the Nehari manifold, we establish the existence of global solutions. Then by virtue of a differential inequality technique, we prove that the local solutions blow-up in finite time with arbitrary negative initial energy and suitable initial values. Moreover, we give decay estimates of global solutions. The main difficulty here is the lack of logarithmic Sobolev inequality concerning fractional p-Laplacian.
引用
收藏
页数:24
相关论文
共 50 条
  • [41] Bifurcation and blow-up results for equations with p-Laplacian and convex-concave nonlinearity
    Ilyasov, Yavdat Shavkatovich
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2017, (96) : 1 - 13
  • [42] Fractional logarithmic inequalities and blow-up results with logarithmic nonlinearity on homogeneous groups
    Kassymov, Aidyn
    Ruzhansky, Michael
    Suragan, Durvudkhan
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2020, 27 (01):
  • [43] GLOBAL EXISTENCE, EXPONENTIAL DECAY AND BLOW-UP OF SOLUTIONS FOR A CLASS OF FRACTIONAL PSEUDO-PARABOLIC EQUATIONS WITH LOGARITHMIC NONLINEARITY
    Liu, Wenjun
    Yu, Jiangyong
    Li, Gang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2021, 14 (12): : 4337 - 4366
  • [44] Fractional logarithmic inequalities and blow-up results with logarithmic nonlinearity on homogeneous groups
    Aidyn Kassymov
    Michael Ruzhansky
    Durvudkhan Suragan
    Nonlinear Differential Equations and Applications NoDEA, 2020, 27
  • [45] Blow up and global existence of solution for a riser problem with logarithmic nonlinearity
    Irkil, Nazli
    Piskin, Erhan
    SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2021, 39 (05): : 56 - 63
  • [46] Blow-up of p-Laplacian evolution equations with variable source power
    Zheng Zhi
    Qi YuanWei
    Zhou ShuLin
    SCIENCE CHINA-MATHEMATICS, 2017, 60 (03) : 469 - 490
  • [47] GLOBAL EXISTENCE AND BLOW-UP OF SOLUTIONS FOR INFINITELY DEGENERATE SEMILINEAR PSEUDO-PARABOLIC EQUATIONS WITH LOGARITHMIC NONLINEARITY
    Chen, Hua
    Xu, Huiyang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (02) : 1185 - 1203
  • [48] Global existence and blow-up of solution to a class of fourth-order equation with singular potential and logarithmic nonlinearity
    Wu, Xiulan
    Zhao, Yaxin
    Yang, Xiaoxin
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2023, (55) : 1 - 16
  • [49] Existence and blow-up of weak solutions of a pseudo-parabolic equation with logarithmic nonlinearity
    Lakshmipriya, N.
    Gnanavel, S.
    Balachandran, K.
    Ma, Yong-Ki
    BOUNDARY VALUE PROBLEMS, 2022, 2022 (01)
  • [50] The Blow-Up and Global Existence of Solution to Caputo–Hadamard Fractional Partial Differential Equation with Fractional Laplacian
    Changpin Li
    Zhiqiang Li
    Journal of Nonlinear Science, 2021, 31