Global Existence and Blow-Up for the Fractional p-Laplacian with Logarithmic Nonlinearity

被引:23
|
作者
Boudjeriou, Tahir [1 ]
机构
[1] Univ Bejaia, Lab Appl Math, Dept Math, Fac Exact Sci, Bejaia 6000, Algeria
关键词
Fractional p-Laplacian; global existence; blow-up; potential well; 35K59; 35K55; 35B40; SEMILINEAR HEAT-EQUATION;
D O I
10.1007/s00009-020-01584-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the following Dirichlet problem for a parabolic equation involving fractional p-Laplacian with logarithmic nonlinearity <disp-formula id="Equ85"><mml:mtable><mml:mtr><mml:mtd columnalign="right"><mml:mfenced open="{"><mml:mtable><mml:mtr><mml:mtd columnalign="left">ut+(-Delta )ps</mml:msubsup>u+|u|p-2u=|u|p-2ulog(|u|)</mml:mtd><mml:mtd columnalign="left">in<mml:mspace width="4pt"></mml:mspace></mml:mtd><mml:mtd>Omega,<mml:mspace width="0.277778em"></mml:mspace>t>0,</mml:mtd></mml:mtr><mml:mtr><mml:mtd columnalign="left">u=0</mml:mtd><mml:mtd columnalign="left">in</mml:mtd><mml:mtd>RN\Omega,<mml:mspace width="0.277778em"></mml:mspace>t>0,</mml:mtd></mml:mtr><mml:mtr><mml:mtd columnalign="left">u(x,0)=<mml:msub>u0(x),</mml:mtd><mml:mtd columnalign="left">in</mml:mtd><mml:mtd>Omega,</mml:mtd></mml:mtr></mml:mtable></mml:mfenced></mml:mtd></mml:mtr></mml:mtable><graphic position="anchor" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="9_2020_1584_Article_Equ85.gif"></graphic></disp-formula>where Omega subset of RN<mml:mspace width="0.166667em"></mml:mspace>(N >= 1) is a bounded domain with Lipschitz boundary and 2 <= p<<infinity>. The local existence will be done using the Galerkin approximations. By combining the potential well theory with the Nehari manifold, we establish the existence of global solutions. Then by virtue of a differential inequality technique, we prove that the local solutions blow-up in finite time with arbitrary negative initial energy and suitable initial values. Moreover, we give decay estimates of global solutions. The main difficulty here is the lack of logarithmic Sobolev inequality concerning fractional p-Laplacian.
引用
收藏
页数:24
相关论文
共 50 条
  • [41] Global Existence and Blow-Up for a Kirchhoff-Type Hyperbolic Problem with Logarithmic Nonlinearity
    Shao, Xiangkun
    APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 84 (02): : 2061 - 2098
  • [42] Global existence and blow-up results for p-Laplacian parabolic problems under nonlinear boundary conditions
    Ding, Juntang
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [43] Bifurcation and blow-up results for equations with p-Laplacian and convex-concave nonlinearity
    Ilyasov, Yavdat Shavkatovich
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2017, (96) : 1 - 13
  • [44] Boundary blow-up solutions of p-Laplacian elliptic equations with a weakly superlinear nonlinearity
    Chen, Yujuan
    Wang, Mingxin
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2013, 14 (03) : 1527 - 1535
  • [45] BLOW-UP SOLUTIONS FOR A p-LAPLACIAN ELLIPTIC EQUATION OF LOGISTIC TYPE WITH SINGULAR NONLINEARITY
    Alves, Claudianor O.
    Santos, Carlos Alberto
    Zhou, Jiazheng
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2019, 53 (02) : 747 - 777
  • [46] Fractional logarithmic inequalities and blow-up results with logarithmic nonlinearity on homogeneous groups
    Aidyn Kassymov
    Michael Ruzhansky
    Durvudkhan Suragan
    Nonlinear Differential Equations and Applications NoDEA, 2020, 27
  • [47] Fractional logarithmic inequalities and blow-up results with logarithmic nonlinearity on homogeneous groups
    Kassymov, Aidyn
    Ruzhansky, Michael
    Suragan, Durvudkhan
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2020, 27 (01):
  • [48] GLOBAL EXISTENCE, EXPONENTIAL DECAY AND BLOW-UP OF SOLUTIONS FOR A CLASS OF FRACTIONAL PSEUDO-PARABOLIC EQUATIONS WITH LOGARITHMIC NONLINEARITY
    Liu, Wenjun
    Yu, Jiangyong
    Li, Gang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2021, 14 (12): : 4337 - 4366
  • [49] BLOW-UP RATE OF SOLUTIONS FOR P-LAPLACIAN EQUATION
    Zhao Junning
    Liang Zhilei
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2008, 21 (02): : 134 - 140
  • [50] A singular non-Newton filtration equation with logarithmic nonlinearity: global existence and blow-up
    Deng, Qigang
    Zeng, Fugeng
    Jiang, Min
    COMPTES RENDUS MECANIQUE, 2022, 350 (01): : 269 - 282