Some New Fractional Inequalities Involving Convex Functions and Generalized Fractional Integral Operator

被引:1
作者
Neamah, Majid K. [1 ,2 ]
Ibrahim, Alawiah [2 ]
Mehdy, Hala Shaker [3 ]
Redhwan, Saleh S. [4 ]
Abdo, Mohammed S. [5 ]
机构
[1] Univ Baghdad, Coll Sci, Dept Math, Baghdad, Iraq
[2] Univ Kebangsaan Malaysia, Fac Sci & Technol, Dept Math Sci, Bangi 43600, Selangor, Malaysia
[3] Al Mustansiriya Univ, Coll Educ, Comp Sci, Baghdad, Iraq
[4] Dr Babasaheb Ambedkar Marathwada Univ, Dept Math, Aurangabad 431001, Maharashtra, India
[5] Hodeidah Univ, Dept Math, Al Hudaydah, Yemen
关键词
POLYA-SZEGO;
D O I
10.1155/2022/2350193
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this manuscript, we are getting some novel inequalities for convex functions by a new generalized fractional integral operator setting. Our results are established by merging the (k, s)-Riemann-Liouville fractional integral operator with the generalized Katugampola fractional integral operator. Certain special instances of our main results are considered. The detailed results extend and generalize some of the present results by applying some special values to the parameters.
引用
收藏
页数:7
相关论文
共 33 条
  • [1] Fractional logistic models in the frame of fractional operators generated by conformable derivatives
    Abdeljawad, Thabet
    Al-Mdallal, Qasem M.
    Jarad, Fahd
    [J]. CHAOS SOLITONS & FRACTALS, 2019, 119 (94-101) : 94 - 101
  • [2] Certain Hermite-Hadamard type inequalities via generalized k-fractional integrals
    Agarwal, Praveen
    Jleli, Mohamed
    Tomar, Muharrem
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [3] Some inequalities involving Hadamard-type k-fractional integral operators
    Agarwal, Praveen
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (11) : 3882 - 3891
  • [4] (k, ψ)-Proportional Fractional Integral Polya-Szego- and Gruss-Type Inequalities
    Aljaaidi, Tariq A.
    Pachpatte, Deepak B.
    Abdo, Mohammed S.
    Botmart, Thongchai
    Ahmad, Hijaz
    Almalahi, Mohammed A.
    Redhwan, Saleh S.
    [J]. FRACTAL AND FRACTIONAL, 2021, 5 (04)
  • [5] A Gronwall inequality via the generalized proportional fractional derivative with applications
    Alzabut, Jehad
    Abdeljawad, Thabet
    Jarad, Fahd
    Sudsutad, Weerawat
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (1)
  • [6] Belarbi S., 2009, J INEQUAL PURE APPL, V10, P1
  • [7] CHEBYSHEV P. L., 1882, Proc. Math. Soc. Charkov, V2, P93
  • [8] Dahmani Z, 2012, ACTA MATH UNIV COMEN, V81, P241
  • [9] Dahmani Z, 2011, BULL MATH ANAL APPL, V3, P38
  • [10] Dragomir S.S., 2003, E ASIAN J MATH, V19, P27