Atmospheric Pressure Low Temperature Direct Plasma Technology: Status and Challenges for Thin Film Deposition

被引:312
作者
Massines, Francoise [1 ]
Sarra-Bournet, Christian [2 ]
Fanelli, Fiorenza [3 ]
Naude, Nicolas [4 ,5 ]
Gherardi, Nicolas [4 ,5 ]
机构
[1] Tecnosud, CNRS, PROMES, Rambla Thermodynam, F-66100 Perpignan, France
[2] Univ Sherbrooke, Dept Phys, Sherbrooke, PQ J1K 2R1, Canada
[3] Univ Bari Aldo Moro, Dept Chem, CNR, Inst Inorgan Methodol & Plasmas, I-70126 Bari, Italy
[4] Univ Toulouse, UPS, INPT, LAPLACE,Lab Plasma & Convers Energie, F-31062 Toulouse 9, France
[5] CNRS, LAPLACE, F-31062 Toulouse, France
关键词
atmospheric pressure cold plasmas; direct deposition; plasma-enhanced chemical vapor deposition (PECVD); reactors; thin films; DIELECTRIC BARRIER DISCHARGE; CHEMICAL-VAPOR-DEPOSITION; GLOW-DISCHARGE; LIQUID DEPOSITION; POLYMER-FILMS; ROTATIONAL TEMPERATURE; TOWNSEND DISCHARGE; CARBON NANOTUBES; SIO2-LIKE FILMS; PE-CVD;
D O I
10.1002/ppap.201200029
中图分类号
O59 [应用物理学];
学科分类号
摘要
Over the last ten years, expansion of atmospheric pressure plasma solutions for surface treatment of materials has been remarkable, however direct plasma technology for thin film deposition needs still great effort. The objective of this paper is to establish the state of the art on scientific and technologic locks, which have to be opened to consider direct atmospheric pressure plasma-enhanced chemical vapor deposition (AP-PECVD) a viable option for industrial application. Basic scientific principles to understand and optimize an AP-PECVD process are summarized. Laboratory reactor configurations are reviewed. Reference points for the design and use of AP-PECVD reactors according to the desired thin film properties are given. Finally, solutions to avoid powder formation and to increase the thin film growth rate are discussed.
引用
收藏
页码:1041 / 1073
页数:33
相关论文
共 166 条
[81]   Anti-Fog Layer Deposition onto Polymer Materials: A Multi-Step Approach [J].
Maechler, L. ;
Sarra-Bournet, C. ;
Chevallier, P. ;
Gherardi, N. ;
Laroche, G. .
PLASMA CHEMISTRY AND PLASMA PROCESSING, 2011, 31 (01) :175-187
[82]  
Maechler L., 2011, 54 ANN TECHN C P CHI
[83]   Effects of current limitation through the dielectric in atmospheric pressure glows in helium [J].
Mangolini, L ;
Anderson, C ;
Heberlein, J ;
Kortshagen, U .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2004, 37 (07) :1021-1030
[84]   Microplasmas for nanomaterials synthesis [J].
Mariotti, Davide ;
Sankaran, R. Mohan .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2010, 43 (32)
[85]   Atmospheric pressure PE-CVD of silicon based coatings using a glow dielectric barrier discharge [J].
Martin, S ;
Massines, F ;
Gherardi, N ;
Jimenez, C .
SURFACE & COATINGS TECHNOLOGY, 2004, 177 :693-698
[86]   Glow and Townsend dielectric barrier discharge in various atmosphere [J].
Massines, F ;
Gherardi, N ;
Naudé, N ;
Ségur, P .
PLASMA PHYSICS AND CONTROLLED FUSION, 2005, 47 :B577-B588
[87]   Physics and chemistry in a glow dielectric barrier discharge at atmospheric pressure:: diagnostics and modelling [J].
Massines, F ;
Ségur, P ;
Gherardi, N ;
Khamphan, C ;
Ricard, A .
SURFACE & COATINGS TECHNOLOGY, 2003, 174 :8-14
[88]   Recent advances in the understanding of homogeneous dielectric barrier discharges [J].
Massines, F. ;
Gherardi, N. ;
Naude, N. ;
Segur, P. .
EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS, 2009, 47 (02)
[89]   Atmospheric pressure plasma deposition of thin films by Townsend dielectric barrier discharge [J].
Massines, F ;
Gherardi, N ;
Fornelli, A ;
Martin, S .
SURFACE & COATINGS TECHNOLOGY, 2005, 200 (5-6) :1855-1861
[90]  
Massines F., 1998, Plasmas and Polymers, V3, P43, DOI 10.1023/A:1022582017499