Atmospheric Pressure Low Temperature Direct Plasma Technology: Status and Challenges for Thin Film Deposition

被引:312
作者
Massines, Francoise [1 ]
Sarra-Bournet, Christian [2 ]
Fanelli, Fiorenza [3 ]
Naude, Nicolas [4 ,5 ]
Gherardi, Nicolas [4 ,5 ]
机构
[1] Tecnosud, CNRS, PROMES, Rambla Thermodynam, F-66100 Perpignan, France
[2] Univ Sherbrooke, Dept Phys, Sherbrooke, PQ J1K 2R1, Canada
[3] Univ Bari Aldo Moro, Dept Chem, CNR, Inst Inorgan Methodol & Plasmas, I-70126 Bari, Italy
[4] Univ Toulouse, UPS, INPT, LAPLACE,Lab Plasma & Convers Energie, F-31062 Toulouse 9, France
[5] CNRS, LAPLACE, F-31062 Toulouse, France
关键词
atmospheric pressure cold plasmas; direct deposition; plasma-enhanced chemical vapor deposition (PECVD); reactors; thin films; DIELECTRIC BARRIER DISCHARGE; CHEMICAL-VAPOR-DEPOSITION; GLOW-DISCHARGE; LIQUID DEPOSITION; POLYMER-FILMS; ROTATIONAL TEMPERATURE; TOWNSEND DISCHARGE; CARBON NANOTUBES; SIO2-LIKE FILMS; PE-CVD;
D O I
10.1002/ppap.201200029
中图分类号
O59 [应用物理学];
学科分类号
摘要
Over the last ten years, expansion of atmospheric pressure plasma solutions for surface treatment of materials has been remarkable, however direct plasma technology for thin film deposition needs still great effort. The objective of this paper is to establish the state of the art on scientific and technologic locks, which have to be opened to consider direct atmospheric pressure plasma-enhanced chemical vapor deposition (AP-PECVD) a viable option for industrial application. Basic scientific principles to understand and optimize an AP-PECVD process are summarized. Laboratory reactor configurations are reviewed. Reference points for the design and use of AP-PECVD reactors according to the desired thin film properties are given. Finally, solutions to avoid powder formation and to increase the thin film growth rate are discussed.
引用
收藏
页码:1041 / 1073
页数:33
相关论文
共 166 条
[11]   Cold atmospheric plasma: Sources, processes, and applications [J].
Bardos, L. ;
Barankova, H. .
THIN SOLID FILMS, 2010, 518 (23) :6705-6713
[12]   Plasma processes at atmospheric and low pressures [J].
Bardos, Ladislav ;
Barankova, Hana .
VACUUM, 2008, 83 (03) :522-527
[13]  
Bazinette R., 2011, P 20 INT S PLASM CHE
[14]   Deposition of functional coatings from acrylic acid and octamethylcyclotetrasiloxane onto steel using an atmospheric pressure dielectric barrier discharge [J].
Beck, A. J. ;
Short, R. D. ;
Matthews, A. .
SURFACE & COATINGS TECHNOLOGY, 2008, 203 (5-7) :822-825
[15]   Nanoscience with non-equilibrium plasmas at atmospheric pressure [J].
Belmonte, T. ;
Arnoult, G. ;
Henrion, G. ;
Gries, T. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2011, 44 (36)
[16]   Nonequilibrium Atmospheric Plasma Deposition [J].
Belmonte, T. ;
Henrion, G. ;
Gries, T. .
JOURNAL OF THERMAL SPRAY TECHNOLOGY, 2011, 20 (04) :744-759
[17]   On the influence of metastable reactions on rotational temperatures in dielectric barrier discharges in He-N2 mixtures [J].
Bibinov, NK ;
Fateev, AA ;
Wiesemann, K .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2001, 34 (12) :1819-1826
[18]  
BOEUF JP, 1999, DUSTY PLASMAS, P43904
[19]   MODELING OF METASTABLE ARGON ATOMS IN A DIRECT-CURRENT GLOW-DISCHARGE [J].
BOGAERTS, A ;
GIJBELS, R .
PHYSICAL REVIEW A, 1995, 52 (05) :3743-3751
[20]   Nucleation and aerosol processing in atmospheric pressure electrical discharges: powders production, coatings and filtration [J].
Borra, JP .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2006, 39 (02) :R19-R54