Cell compatible encapsulation of filaments into 3D hydrogels

被引:5
作者
Schirmer, Katharina S. U. [1 ]
Gorkin, Robert, III [1 ]
Beirne, Stephen [1 ]
Stewart, Elise [1 ]
Thompson, Brianna C. [1 ]
Quigley, Anita F. [1 ,2 ,3 ]
Kapsa, Robert M. I. [1 ,2 ,3 ]
Wallace, Gordon G. [1 ]
机构
[1] Univ Wollongong, Intelligent Polymer Res Inst, ARC Ctr Electromat Sci, Wollongong, NSW, Australia
[2] St Vincents Hosp, Dept Clin Neurosci, Melbourne, Vic, Australia
[3] Univ Melbourne, Dept Med, Melbourne, Vic 3010, Australia
关键词
alginate; filaments; 3D; cells; PERIPHERAL-NERVE; CONDUITS; FABRICATION; REGENERATION; FIBERS; DELIVERY; RELEASE; GROWTH; GAP;
D O I
10.1088/1758-5090/8/2/025013
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Tissue engineering scaffolds for nerve regeneration, or artificial nerve conduits, are particularly challenging due to the high level of complexity the structure of the nerve presents. The list of requirements for artificial nerve conduits is long and includes the ability to physically guide nerve growth using physical and chemical cues as well as electrical stimulation. Combining these characteristics into a conduit, while maintaining biocompatibility and biodegradability, has not been satisfactorily achieved by currently employed fabrication techniques. Here we present a method combining pultrusion and wet-spinning techniques facilitating incorporation of pre-formed filaments into ionically crosslinkable hydrogels. This new biofabrication technique allows the incorporation of conducting or drug-laden filaments, controlled guidance channels and living cells into hydrogels, creating new improved conduit designs.
引用
收藏
页数:13
相关论文
共 32 条
  • [11] ELECTRICAL STIMULATION FOR IMPROVING NERVE REGENERATION: WHERE DO WE STAND?
    Gordon, Tessa
    Sulaiman, Olewale A. R.
    Ladak, Adil
    [J]. ESSAYS ON PERIPHERAL NERVE REPAIR AND REGENERATION, 2009, 87 : 433 - 444
  • [12] Construction of tissue engineered nerve grafts and their application in peripheral nerve regeneration
    Gu, Xiaosong
    Ding, Fei
    Yang, Yumin
    Liu, Jie
    [J]. PROGRESS IN NEUROBIOLOGY, 2011, 93 (02) : 204 - 230
  • [13] Polymeric materials based on silk proteins
    Hardy, John G.
    Roemer, Lin M.
    Scheibel, Thomas R.
    [J]. POLYMER, 2008, 49 (20) : 4309 - 4327
  • [14] Hart A, 2011, TISSUE ENGINEERING: FROM LAB TO CLINIC, P245, DOI 10.1007/978-3-642-02824-3_13
  • [15] Hydrodynamic spinning of hydrogel fibers
    Hu, Min
    Deng, Rensheng
    Schumacher, Karl M.
    Kurisawa, Motoichi
    Ye, Hongye
    Purnamawati, Kristy
    Ying, Jackie Y.
    [J]. BIOMATERIALS, 2010, 31 (05) : 863 - 869
  • [16] Current applications and future perspectives of artificial nerve conduits
    Jiang, Xu
    Lim, Shawn H.
    Mao, Hai-Quan
    Chew, Sing Yian
    [J]. EXPERIMENTAL NEUROLOGY, 2010, 223 (01) : 86 - 101
  • [17] Fabrication of polymeric biomaterials: a strategy for tissue engineering and medical devices
    Khan, Ferdous
    Tanaka, Masaru
    Ahmad, Sheikh Rafi
    [J]. JOURNAL OF MATERIALS CHEMISTRY B, 2015, 3 (42) : 8224 - 8249
  • [18] Kramschuster A, 2013, PDL HANDB SER, P427, DOI 10.1016/B978-1-4557-2834-3.00017-3
  • [19] Microfluidic wet spinning of chitosan-alginate microfibers and encapsulation of HepG2 cells in fibers
    Lee, Bo Ram
    Lee, Kwang Ho
    Kang, Edward
    Kim, Dong-Sik
    Lee, Sang-Hoon
    [J]. BIOMICROFLUIDICS, 2011, 5 (02):
  • [20] Functional Regeneration of a Severed Peripheral Nerve With a 7-mm Gap in Rats Through the Use of An Implantable Electrical Stimulator and a Conduit Electrode With Collagen Coating
    Lee, Tae Hyung
    Pan, Hui
    Kim, In Sook
    Kim, Jin Kyu
    Cho, Tae Hyung
    Oh, Ji Hye
    Yoon, Young Bong
    Lee, Jong Ho
    Hwang, Soon Jung
    Kim, Sung June
    [J]. NEUROMODULATION, 2010, 13 (04): : 299 - 305