Non-linear State Estimation of a DC Series Motor: A Review and a Novel Tuning Method

被引:0
|
作者
Padierna Vanegas, Daniel [1 ]
Alvarez-Valle, Robinson S. [1 ]
Villa Tamayo, Maria Fernanda [1 ]
机构
[1] Univ Nacl Colombia Sede Medellin, Fac Minas, Medellin, Colombia
来源
2019 IEEE 4TH COLOMBIAN CONFERENCE ON AUTOMATIC CONTROL (CCAC): AUTOMATIC CONTROL AS KEY SUPPORT OF INDUSTRIAL PRODUCTIVITY | 2019年
关键词
DC series motor; Kalman filter; Luenberger observer; non-linear systems; state estimation; sliding mode observer; pole assignment;
D O I
10.1109/ccac.2019.8920856
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper computes different non-linear estimation techniques for the state variables of a DC series motor. The measured variable is the rotor speed, and the estimated variable is the current. Adding a null dynamic, the load torque can be estimated too. Each estimator is based on mathematical structures found in the literature. It does a development and comparison among the extended Luenberger observer (ELO), the extended Kalman filter (EKF) and the extended sliding mode observer (ESMO). The last estimator is designed using the static poles assignment, and a non -static pole assignment is proposed with the Ackerman's formula as a novel and easy method to recalculated the constants for the estimator in each iteration. Each estimator is simulated under sensor noise, plant-model mismatch, changes in the input and disturbances. The simulation results are contrasted using integral square error (ISE) and making conclusions about it.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] A new algorithm for latent state estimation in non-linear time series models
    Date, Paresh
    Jalen, Luka
    Mamon, Rogemar
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 203 (01) : 224 - 232
  • [2] Reliable non-linear state estimation involving time uncertainties
    Rohou, Simon
    Jaulin, Luc
    Mihaylova, Lyudmila
    Le Bars, Fabrice
    Veres, Sandor M.
    AUTOMATICA, 2018, 93 : 379 - 388
  • [3] An identification-based state estimation method for a class of non-linear systems
    Atam, E.
    Hooker, G.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART I-JOURNAL OF SYSTEMS AND CONTROL ENGINEERING, 2010, 224 (I4) : 349 - 359
  • [4] State estimation for linear and non-linear equality-constrained systems
    Teixeira, Bruno O. S.
    Chandrasekar, Jaganath
    Torres, Leonardo A. B.
    Aguirre, Luis A.
    Bernstein, Dennis S.
    INTERNATIONAL JOURNAL OF CONTROL, 2009, 82 (05) : 918 - 936
  • [5] EXACT AND APPROXIMATE STATE ESTIMATION FOR NON-LINEAR DYNAMIC-SYSTEMS - COMMENT
    YONEZAWA, K
    AUTOMATICA, 1979, 15 (01) : 123 - 123
  • [6] Joint estimation of state and system biases in non-linear system
    Zhou, Lin
    Liu, Xianxing
    Hu, Zhentao
    Jin, Yong
    Shi, Wentao
    IET SIGNAL PROCESSING, 2017, 11 (01) : 10 - 16
  • [7] Hybrid non-linear state estimation with voltage phasor measurements
    Qin, Xiaohui
    Bi, Tianshu
    Yang, Qixun
    2007 IEEE POWER ENGINEERING SOCIETY GENERAL MEETING, VOLS 1-10, 2007, : 2249 - +
  • [8] DC MOTOR TORQUE CONTROL USING STATE ESTIMATION
    Farnaz, Zanahul
    Sajith, Husain S.
    Abeysekara, Anuradha D.
    Welikala, Shirantha
    Binduhewa, Prabath J.
    Ekanayake, Parakrama B.
    Samaranayake, Lilantha
    CONTROL AND INTELLIGENT SYSTEMS, 2016, 44 (03) : 130 - 138
  • [9] Non-linear estimation is easy
    Fliess, Michel
    Join, Cedric
    Sira-Ramirez, Hebertt
    INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2008, 4 (01) : 12 - 27
  • [10] Distributed state estimation for stochastic non-linear systems with random delays and packet dropouts
    Wang, Shaoying
    Fang, Huajing
    Liu, Xiaoyong
    IET CONTROL THEORY AND APPLICATIONS, 2015, 9 (18) : 2657 - 2665