Type II p21-activated kinases (PAKs) are regulated by an autoinhibitory pseudosubstrate

被引:65
作者
Ha, Byung Hak [1 ]
Davis, Matthew J. [1 ,2 ]
Chen, Catherine [1 ]
Lou, Hua Jane [1 ]
Gao, Jia [1 ,6 ]
Zhang, Rong [1 ]
Krauthammer, Michael [3 ]
Halaban, Ruth [4 ]
Schlessinger, Joseph [1 ,5 ]
Turk, Benjamin E. [1 ,5 ]
Boggon, Titus J. [1 ,5 ]
机构
[1] Yale Univ, Sch Med, Dept Pharmacol, New Haven, CT 06520 USA
[2] Yale Univ, Sch Med, Dept Genet, New Haven, CT 06520 USA
[3] Yale Univ, Sch Med, Dept Pathol, New Haven, CT 06520 USA
[4] Yale Univ, Sch Med, Dept Dermatol, New Haven, CT 06520 USA
[5] Yale Univ, Sch Med, Yale Canc Ctr, New Haven, CT 06520 USA
[6] Guangxi Univ, Coll Life Sci & Technol, Nanning 530004, Guangxi, Peoples R China
基金
美国国家卫生研究院;
关键词
autoregulation; protein kinase; RHO GTPase effector; signaling; ANCHORAGE-INDEPENDENT GROWTH; CELL-MIGRATION; SERINE/THREONINE KINASE; SOMATIC MUTATION; PROSTATE-CANCER; PROTEIN-KINASE; ACTIVATION; SURVIVAL; RECEPTOR; DOMAIN;
D O I
10.1073/pnas.1214447109
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The type II p21-activated kinases (PAKs) are key effectors of RHO-family GTPases involved in cell motility, survival, and proliferation. Using a structure-guided approach, we discovered that type II PAKs are regulated by an N-terminal autoinhibitory pseudosubstrate motif centered on a critical proline residue, and that this regulation occurs independently of activation loop phosphorylation. We determined six X-ray crystal structures of either full-length PAK4 or its catalytic domain, that demonstrate the molecular basis for pseudosubstrate binding to the active state with phosphorylated activation loop. We show that full-length PAK4 is constitutively autoinhibited, but mutation of the pseudosubstrate releases this inhibition and causes increased phosphorylation of the apoptotic regulation protein Bcl-2/Bcl-X-L antagonist causing cell death and cellular morphological changes. We also find that PAK6 is regulated by the pseudosubstrate region, indicating a common type II PAK autoregulatory mechanism. Finally, we find Src SH3, but not beta-PIX SH3, can activate PAK4. We provide a unique understanding for type II PAK regulation.
引用
收藏
页码:16107 / 16112
页数:6
相关论文
共 41 条
[21]   Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma [J].
Krauthammer, Michael ;
Kong, Yong ;
Ha, Byung Hak ;
Evans, Perry ;
Bacchiocchi, Antonella ;
McCusker, James P. ;
Cheng, Elaine ;
Davis, Matthew J. ;
Goh, Gerald ;
Choi, Murim ;
Ariyan, Stephan ;
Narayan, Deepak ;
Dutton-Regester, Ken ;
Capatana, Ana ;
Holman, Edna C. ;
Bosenberg, Marcus ;
Sznol, Mario ;
Kluger, Harriet M. ;
Brash, Douglas E. ;
Stern, David F. ;
Materin, Miguel A. ;
Lo, Roger S. ;
Mane, Shrikant ;
Ma, Shuangge ;
Kidd, Kenneth K. ;
Hayward, Nicholas K. ;
Lifton, Richard P. ;
Schlessinger, Joseph ;
Boggon, Titus J. ;
Halaban, Ruth .
NATURE GENETICS, 2012, 44 (09) :1006-+
[22]   Structure of PAK1 in an autoinhibited conformation reveals a multistage activation switch [J].
Lei, M ;
Lu, WG ;
Meng, WY ;
Parrini, MC ;
Eck, MJ ;
Mayer, BJ ;
Harrison, SC .
CELL, 2000, 102 (03) :387-397
[23]   PAK4 functions in tumor necrosis factor (TNF) α-induced survival pathways by facilitating TRADD binding to the TNF receptor [J].
Li, XF ;
Minden, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (50) :41192-41200
[24]   p21-activated Kinase 4 Phosphorylation of Integrin β5 Ser-759 and Ser-762 Regulates Cell Migration [J].
Li, Zhilun ;
Zhang, Hongquan ;
Lundin, Lars ;
Thullberg, Minna ;
Liu, Yajuan ;
Wang, Yunling ;
Claesson-Welsh, Lena ;
Stromblad, Staffan .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2010, 285 (31) :23699-23710
[25]   The Pak4 protein kinase plays a key role in cell survival and tumorigenesis in athymic mice [J].
Liu, Yingying ;
Xiao, Hang ;
Tian, Yanmei ;
Nekrasova, Tanya ;
Hao, Xingpei ;
Lee, Hong Jin ;
Suh, Nanjoo ;
Yang, Chung S. ;
Minden, Audrey .
MOLECULAR CANCER RESEARCH, 2008, 6 (07) :1215-1224
[26]   PAK kinases are directly coupled to the PIX family of nucleotide exchange factors [J].
Manser, E ;
Loo, TH ;
Koh, CG ;
Zhao, ZS ;
Chen, XQ ;
Tan, L ;
Tan, I ;
Leung, T ;
Lim, L .
MOLECULAR CELL, 1998, 1 (02) :183-192
[27]   PAK signaling in oncogenesis [J].
Molli, P. R. ;
Li, D. Q. ;
Murray, B. W. ;
Rayala, S. K. ;
Kumar, R. .
ONCOGENE, 2009, 28 (28) :2545-2555
[28]   Small-molecule p21-activated kinase inhibitor PF-3758309 is a potent inhibitor of oncogenic signaling and tumor growth [J].
Murray, Brion W. ;
Guo, Chuangxing ;
Piraino, Joseph ;
Westwick, John K. ;
Zhang, Cathy ;
Lamerdin, Jane ;
Dagostino, Eleanor ;
Knighton, Daniel ;
Loi, Cho-Ming ;
Zager, Michael ;
Kraynov, Eugenia ;
Popoff, Ian ;
Christensen, James G. ;
Martinez, Ricardo ;
Kephart, Susan E. ;
Marakovits, Joseph ;
Karlicek, Shannon ;
Bergqvist, Simon ;
Smeal, Tod .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (20) :9446-9451
[29]   Targeted disruption of the Pak5 and Pak6 genes in mice leads to deficits in learning and locomotion [J].
Nekrasova, Tanya ;
Jobes, Michelle L. ;
Ting, Jenhao H. ;
Wagner, George C. ;
Minden, Audrey .
DEVELOPMENTAL BIOLOGY, 2008, 322 (01) :95-108
[30]   Cloning and characterization of PAK5, a novel member of mammalian p21-activated kinase-II subfamily that is predominantly expressed in brain [J].
Pandey, A ;
Dan, I ;
Kristiansen, TZ ;
Watanabe, NM ;
Voldby, J ;
Kajikawa, E ;
Khosravi-Far, R ;
Blagoev, B ;
Mann, M .
ONCOGENE, 2002, 21 (24) :3939-3948