An azamacrocyclic electrolyte additive to suppress metal deposition in lithium-ion batteries

被引:27
作者
Kim, Hyun-seung [1 ]
Jurng, Sunhyung [1 ]
Sim, Seunghee [1 ]
Yoon, Taeho [1 ]
Mun, Junyoung [2 ]
Ryu, Ji Heon [3 ]
Oh, Seung M. [1 ]
机构
[1] Seoul Natl Univ, Dept Chem & Biol Engn, Seoul 151742, South Korea
[2] Incheon Natl Univ, Dept Energy & Chem Engn, Inchon 406840, South Korea
[3] Korea Polytech Univ, Grad Sch Knowledge Based Technol & Energy, Siheung Si 429793, Gyeonggi Do, South Korea
基金
新加坡国家研究基金会;
关键词
Lithium-ion batteries; Electrolyte additives; Metal dissolution; Metal deposition; Internal short; Electrolyte decomposition; EDGE PLANE GRAPHITE; CAPACITY LOSSES; MN(II); DISSOLUTION; DEGRADATION; SURFACE; ANODES;
D O I
10.1016/j.elecom.2015.05.019
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
An azamacrocyclic compound (1,4,8,11-tetraazacyclotetradecane, cyclam), which forms strong chelate complexes with metal ions such as Mn(II) and Fe(II), is tested as an electrolyte additive to suppress metal deposition. The tetradentate cyclic ligand is electrochemically stable within the working voltage of lithium-ion batteries (0.0-4.5 V vs. Li/Li+), hence it is practicable as an electrolyte additive. Deposition of Mn on a graphite electrode, which is severe when a Li/graphite cell is cycled in a Mn(II)-containing electrolyte solution, is greatly suppressed by adding cyclam. Our elemental analysis reveals negligible Mn deposits on a graphite electrode indicating the beneficial role of cyclam. The suppression of metal deposition is further indicated by the absence of an internal short between Li metal and lithium cobalt oxide positive electrode. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:25 / 28
页数:4
相关论文
共 14 条
[1]  
Amasaki S., 2014, 55 BATT S JAP KYOT
[2]  
Bard A.J., 2001, Electrochemical Methods: Fundamentals and Applications, V2
[3]   Synthesis, X-ray structure, electrochemical, and EPR studies of a pentacoordinated Mn(II) tetramethylcyclam complex [J].
Bucher, C ;
Duval, E ;
Barbe, JM ;
Verpeaux, JN ;
Amatore, C ;
Guilard, R ;
Le Pape, L ;
Latour, JM ;
Dahaoui, S ;
Lecomte, C .
INORGANIC CHEMISTRY, 2001, 40 (22) :5722-+
[4]   Effect of SEI on Capacity Losses of Spinel Lithium Manganese Oxide/Graphite Batteries Stored at 60°C [J].
Cho, In Haeng ;
Kim, Sung-Soo ;
Shin, Soon Cheol ;
Choi, Nam-Soon .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2010, 13 (11) :A168-A172
[5]   Dissolution of spinel oxides and capacity losses in 4V Li/LixMn2O4 coils [J].
Jang, DH ;
Shin, YJ ;
Oh, SM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (07) :2204-2211
[6]   Influence of manganese(II), cobalt(II), and nickel(II) additives in electrolyte on performance of graphite anode for lithium-ion batteries [J].
Komaba, S ;
Kumagai, N ;
Kataoka, Y .
ELECTROCHIMICA ACTA, 2002, 47 (08) :1229-1239
[7]   Impact of 2-vinylpyridine as electrolyte additive on surface and electrochemistry of graphite for C/LiMn2O4 Li-ion cells [J].
Komaba, S ;
Itabashi, T ;
Ohtsuka, T ;
Groult, H ;
Kumagai, N ;
Kaplan, B ;
Yashiro, H .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (05) :A937-A946
[8]   Inorganic electrolyte additives to suppress the degradation of graphite anodes by dissolved Mn(II) for lithium-ion batteries [J].
Komaba, S ;
Kaplan, B ;
Ohtsuka, T ;
Kataoka, Y ;
Kumagai, N ;
Groult, H .
JOURNAL OF POWER SOURCES, 2003, 119 :378-382
[9]   Effects of Electrolyte Additives on the Suppression of Mn Deposition on Edge Plane Graphite for Lithium-Ion Batteries [J].
Ochida, Manabu ;
Doi, Takayuki ;
Domi, Yasuhiro ;
Tsubouchi, Shigetaka ;
Nakagawa, Hiroe ;
Yamanaka, Toshiro ;
Abe, Takeshi ;
Ogumi, Zempachi .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (02) :A410-A413
[10]   Influence of Manganese Dissolution on the Degradation of Surface Films on Edge Plane Graphite Negative-Electrodes in Lithium-Ion Batteries [J].
Ochida, Manabu ;
Domi, Yasuhiro ;
Doi, Takayuki ;
Tsubouchi, Shigetaka ;
Nakagawa, Hiroe ;
Yamanaka, Toshiro ;
Abe, Takeshi ;
Ogumi, Zempachi .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (07) :A961-A966