Time-periodic solutions to a nonlinear wave equation with periodic or anti-periodic boundary conditions

被引:18
作者
Ji, Shuguan [1 ,2 ]
机构
[1] Jilin Univ, Coll Math, Changchun 130012, Peoples R China
[2] Jilin Univ, Minist Educ, Key Lab Symbol Computat & Knowledge Engn, Changchun 130012, Peoples R China
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2009年 / 465卷 / 2103期
关键词
existence; periodic solutions; wave equation; X-DEPENDENT COEFFICIENTS; FORCED VIBRATIONS;
D O I
10.1098/rspa.2008.0272
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper is concerned with the existence of time-periodic solutions to the nonlinear wave equation with x-dependent coefficients u(x)y(tt) - (u(x)y(x))(x)+au(x)(y)+vertical bar y vertical bar(p-2) y=f(x, t) on (0, pi) x R under the periodic or anti-periodic boundary conditions y(0, t) = +/- y(pi, t), y(x)(0, t) = +/- y(x)(pi, t) and the time-periodic conditions y(x, t+T) = y(x, t), y(t)(x, t+T) = y(t)(x, t). Such a model arises from the forced vibrations of a non-homogeneous string and the propagation of seismic waves in non-isotropic media. A main concept is the notion 'weak solution' to be given in (sic)2. For T = 2 pi/k(k is an element of R), we establish the existence of time-periodic solutions in the weak sense by investigating some important properties of the wave operator with x - dependent coefficients.
引用
收藏
页码:895 / 913
页数:19
相关论文
共 23 条
[1]  
[Anonymous], 1977, OPERATORYI SHTURMA L
[2]   PERIODIC-SOLUTIONS OF A NON-LINEAR WAVE-EQUATION [J].
BAHRI, A ;
BREZIS, H .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1980, 85 :313-320
[3]   Periodic solutions to one-dimensional wave equation with piece-wise constant coefficients [J].
Barbu, V ;
Pavel, NH .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 132 (02) :319-337
[4]   Periodic solutions to nonlinear one dimensional wave equation with X-dependent coefficients [J].
Barbu, V ;
Pavel, NH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 349 (05) :2035-2048
[5]   Determining the acoustic impedance in the 1-D wave equation via an optimal control problem [J].
Barbu, V ;
Pavel, NH .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1997, 35 (05) :1544-1556
[6]   Periodic solutions of nonlinear wave equations with general nonlinearities [J].
Berti, M ;
Bolle, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 243 (02) :315-328
[7]   Forced vibrations of wave equations with non-monotone nonlinearities [J].
Berti, Massimiliano ;
Biasco, Luca .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2006, 23 (04) :439-474
[8]  
BREZIS H, 1978, COMMUN PUR APPL MATH, V31, P1
[10]  
Cesari L., 1965, ARCH RATION MECH AN, V20, P170, DOI [10.1007/BF00276443, https://doi.org/10.1007/bf00276443, DOI 10.1007/BF00276443]