A generalization of the inexact parameterized Uzawa methods for saddle point problems

被引:67
作者
Chen, Fang [1 ,2 ]
Jiang, Yao-Lin [1 ]
机构
[1] Xi An Jiao Tong Univ, Dept Math Sci, Xian 710049, Peoples R China
[2] Xian Univ Post & Telecommun, Dept Math & Phys, Xian 710121, Peoples R China
关键词
Saddle point problems; Iterative method; Convergence;
D O I
10.1016/j.amc.2008.09.041
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For large sparse saddle point problems, Bai and Wang recently studied a class of parameterized inexact Uzawa methods (see Z.-Z. Bai, Z.-Q. Wang, On paramaterized inexact Uzawa methods for generalized saddle point problems, Linear Algebra Appl. 428 (2008) 2900-2932). In this paper, we generalize these methods and propose a class of generalized inexact parameterized iterative schemes for solving the saddle point problems. We derive conditions for guaranteeing the convergence of these iterative methods. With different choices of the parameter matrices, the generalized iterative methods lead to a series of existing and new iterative methods including the classical Uzawa method, the inexact Uzawa method, the GSOR method and the GIAOR method. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:765 / 771
页数:7
相关论文
共 15 条
[1]  
[Anonymous], 1958, STUD LINEAR NONLINEA
[2]   On parameterized inexact Uzawa methods for generalized saddle point problems [J].
Bai, Zhong-Zhi ;
Wang, Zeng-Qi .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (11-12) :2900-2932
[3]  
Bai ZZ, 2007, IMA J NUMER ANAL, V27, P1, DOI [10.1093/imanum/dr1017, 10.1093/imanum/drl017]
[4]   Optimal parameter in Hermitian and skew-Hermitian splitting method for certain two-by-two block matrices [J].
Bai, Zhong-Zhi ;
Golub, Gene H. ;
Li, Chi-Kwong .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 28 (02) :583-603
[5]  
Bai ZZ, 2006, MATH COMPUT, V75, P791, DOI 10.1090/S0025-5718-05-01801-6
[6]   On generalized successive overrelaxation methods for augmented linear systems [J].
Bai, ZZ ;
Parlett, BN ;
Wang, ZQ .
NUMERISCHE MATHEMATIK, 2005, 102 (01) :1-38
[7]   Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems [J].
Bai, ZZ ;
Golub, GH ;
Pan, JY .
NUMERISCHE MATHEMATIK, 2004, 98 (01) :1-32
[8]   Restrictively preconditioned conjugate gradient methods for systems of linear equations [J].
Bai, ZZ ;
Li, GQ .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2003, 23 (04) :561-580
[9]   Hermitian and skew-Hermitian splitting methods for non-hermitian positive definite linear systems [J].
Bai, ZZ ;
Golub, GH ;
Ng, MK .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2003, 24 (03) :603-626
[10]   Analysis of the inexact Uzawa algorithm for saddle point problems [J].
Bramble, JH ;
Pasciak, JE ;
Vassilev, AT .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (03) :1072-1092