A space-time discontinuous Galerkin method for the elastic wave equation

被引:12
作者
Antonietti, Paola F. [1 ]
Mazzieri, Ilario [1 ]
Migliorini, Francesco [1 ]
机构
[1] Politecn Milan, Dipartimento Matemat, Lab Modeling & Sci Comp, MOX, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
关键词
Discontinuous Galerkin methods; Wave equation; Space-time finite elements; Stability and convergence analysis; FINITE-ELEMENT METHODS; ELASTODYNAMICS; FORMULATIONS; SEMIIMPLICIT; MESHES; APPROXIMATIONS; STABILITY; SCHEMES;
D O I
10.1016/j.jcp.2020.109685
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this work we present a new high order space-time discretization method based on a discontinuous Galerkin paradigm for the second order visco-elastodynamics equation. After introducing the method, we show that the resulting space-time discontinuous Galerkin formulation is well-posed, stable and retains optimal rate of convergence with respect to the discretization parameters, namely the mesh size and the polynomial approximation degree. A set of two and three-dimensional numerical experiments confirms the theoretical bounds. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:26
相关论文
共 63 条
[21]  
Dumbser M., 2003, CR MECANIQUE, V333, P683
[22]   A staggered semi-implicit spectral discontinuous Galerkin scheme for the shallow water equations [J].
Dumbser, Michael ;
Casulli, Vincenzo .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (15) :8057-8077
[23]   Building spacetime meshes over arbitrary spatial domains [J].
Erickson, J ;
Guoy, D ;
Sullivan, JM ;
Üngör, A .
ENGINEERING WITH COMPUTERS, 2005, 20 (04) :342-353
[24]   Spectral semi-implicit and space-time discontinuous Galerkin methods for the incompressible Navier-Stokes equations on staggered Cartesian grids [J].
Fambri, Francesco ;
Dumbser, Michael .
APPLIED NUMERICAL MATHEMATICS, 2016, 110 :41-74
[25]   Dispersion-dissipation analysis of 3-D continuous and discontinuous spectral element methods for the elastodynamics equation [J].
Ferroni, A. ;
Antonietti, P. F. ;
Mazzieri, I. ;
Quarteroni, A. .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2017, 211 (03) :1554-1574
[26]  
Fournier, 2003, PURE APPL MATH, V140
[27]   A continuous space-time finite element method for the wave equation [J].
French, DA ;
Peterson, TE .
MATHEMATICS OF COMPUTATION, 1996, 65 (214) :491-506
[28]   A SPACE-TIME FINITE-ELEMENT METHOD FOR THE WAVE-EQUATION [J].
FRENCH, DA .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1993, 107 (1-2) :145-157
[29]   Discontinuous Galerkin methods for advection-diffusion-reaction problems on anisotropically refined meshes [J].
Georgoulis, Emmanuil H. ;
Hall, Edward ;
Houston, Paul .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2007, 30 (01) :246-271
[30]  
Gopalakrishnan J., 2019, ARXIV190611029