Fuzzy Kohonen clustering networks for interval data

被引:21
作者
de Almeida, Carlos W. D. [1 ]
de Souza, Renata M. C. R. [1 ]
Candelas, Ana L. B.
机构
[1] Univ Fed Pernambuco, Ctr Informat Cln, BR-50740560 Recife, PE, Brazil
关键词
Symbolic data analysis; Fuzzy Kohonen clustering network; Interval data; Weighted distances; ALGORITHMS; SIMILARITY;
D O I
10.1016/j.neucom.2012.06.019
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Fuzzy Kohonen Clustering Network combines the idea of fuzzy membership values for learning rates. It is a kind of self-organizing fuzzy neural network that can show great superiority in processing the ambiguity and the uncertainty of data sets or images. Symbolic data analysis provides suitable tools for managing aggregated data described by intervals. This paper introduces Fuzzy Kohonen Clustering Networks for partitioning interval data. The first network is based on a fixed Euclidean distance for interval and the second one considers weighted distances that change at each iteration, but are different from one cluster to another. Experiments with real and synthetic interval data sets demonstrate the usefulness of these networks. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:65 / 75
页数:11
相关论文
共 48 条
[1]  
Abonyi J., 2007, CLUSTER ANAL DATA MI
[2]  
[Anonymous], 1992, Neural computation and self-organizing maps
[3]  
[Anonymous], 1998, METAL IONS BIOL SYST
[4]  
[Anonymous], 2001, Neural Networks: A Comprehensive Foundation
[5]  
[Anonymous], Pattern Recognition with Fuzzy Objective Function Algorithms
[6]   Local matrix learning in clustering and applications for manifold visualization [J].
Arnonkijpanich, Banchar ;
Hasenfuss, Alexander ;
Hammer, Barbara .
NEURAL NETWORKS, 2010, 23 (04) :476-486
[7]  
Bezdek J. C., 1992, P 1 IEEE C FUZZ SYST
[8]  
Bezdek J.C., 2005, HDB FUZZY SETS
[9]   From the statistics of data to the statistics of knowledge: Symbolic data analysis [J].
Billard, L ;
Diday, E .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2003, 98 (462) :470-487
[10]  
Bock H. -H., 2003, NEW TRENDS COMPUTATI, V15, P217