Thermometry of levitated nanoparticles in a hybrid electro-optical trap

被引:9
作者
Aranas, E. B. [1 ]
Fonseca, P. Z. G. [1 ]
Barker, P. F. [1 ]
Monteiro, T. S. [1 ]
机构
[1] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England
基金
英国工程与自然科学研究理事会;
关键词
optomechanics; levitated nanoparticles; cavity cooling;
D O I
10.1088/2040-8986/aa5b45
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
There have been recent rapid developments in stable trapping of levitated nanoparticles in high vacuum. Cooling of nanoparticles, from phonon occupancies of 10(7) down to. similar or equal to 100-1000 phonons, have already been achieved by several groups. Prospects for quantum ground-state cooling seem extremely promising. Cavity-cooling without added stabilisation by feedback cooling remains challenging, but trapping at high vacuum in a cavity is now possible through the addition of a Paul trap. However, the Paul trap has been found to qualitatively modify the cavity output spectrum, with the latter acquiring an atypical 'split-sideband' structure, of different form from the displacement spectrum, and which depends on N, the optical well at which the particle localises. In the present work we investigate the N-dependence of the dynamics, in particular with respect to thermometry: we show that in strong cooling regions N greater than or similar to 100, the temperature may still be reliably inferred from the cavity output spectra. We also explain the N-dependence of the mechanical frequencies and optomechanical coupling showing that these may be accurately estimated. We present a simple 'fast-cavity' model for the cavity output and test all our findings against full numerical solutions of the nonlinear stochastic equations of motion for the system.
引用
收藏
页数:12
相关论文
共 33 条
[1]   Observation of Gravitational Waves from a Binary Black Hole Merger [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Abernathy, M. R. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adams, T. ;
Addesso, P. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Allen, B. ;
Allocca, A. ;
Altin, P. A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Arai, K. ;
Arain, M. A. ;
Araya, M. C. ;
Arceneaux, C. C. ;
Areeda, J. S. ;
Arnaud, N. ;
Arun, K. G. ;
Ascenzi, S. ;
Ashton, G. ;
Ast, M. ;
Aston, S. M. ;
Astone, P. ;
Aufmuth, P. ;
Aulbert, C. ;
Babak, S. ;
Bacon, P. ;
Bader, M. K. M. ;
Baker, P. T. ;
Baldaccini, F. ;
Ballardin, G. ;
Ballmer, S. W. ;
Barayoga, J. C. ;
Barclay, S. E. ;
Barish, B. C. ;
Barker, D. ;
Barone, F. .
PHYSICAL REVIEW LETTERS, 2016, 116 (06)
[2]  
[Anonymous], ARXIV160502953
[3]  
[Anonymous], ARXIV106302917
[4]  
[Anonymous], ARXIV160807315
[5]   Split-sideband spectroscopy in slowly modulated optomechanics [J].
Aranas, E. B. ;
Fonseca, P. Z. G. ;
Barker, P. F. ;
Monteiro, T. S. .
NEW JOURNAL OF PHYSICS, 2016, 18
[6]   Cavity optomechanics [J].
Aspelmeyer, Markus ;
Kippenberg, Tobias J. ;
Marquardt, Florian .
REVIEWS OF MODERN PHYSICS, 2014, 86 (04) :1391-1452
[7]   Cavity cooling of an optically trapped nanoparticle [J].
Barker, P. F. ;
Shneider, M. N. .
PHYSICAL REVIEW A, 2010, 81 (02)
[8]   Near-field interferometry of a free-falling nanoparticle from a point-like source [J].
Bateman, James ;
Nimmrichter, Stefan ;
Hornberger, Klaus ;
Ulbricht, Hendrik .
NATURE COMMUNICATIONS, 2014, 5
[9]   Laser cooling of a nanomechanical oscillator into its quantum ground state [J].
Chan, Jasper ;
Mayer Alegre, T. P. ;
Safavi-Naeini, Amir H. ;
Hill, Jeff T. ;
Krause, Alex ;
Groeblacher, Simon ;
Aspelmeyer, Markus ;
Painter, Oskar .
NATURE, 2011, 478 (7367) :89-92
[10]   Cavity opto-mechanics using an optically levitated nanosphere [J].
Chang, D. E. ;
Regal, C. A. ;
Papp, S. B. ;
Wilson, D. J. ;
Ye, J. ;
Painter, O. ;
Kimble, H. J. ;
Zoller, P. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (03) :1005-1010