Intelligent fault diagnosis method for rotating machinery via dictionary learning and sparse representation-based classification

被引:63
|
作者
Han, Te [1 ]
Jiang, Dongxiang [1 ]
Sun, Yankui [2 ]
Wang, Nanfei [1 ]
Yang, Yizhou [1 ]
机构
[1] Tsinghua Univ, Dept Energy & Power Engn, State Key Lab Control & Simulat Power Syst & Gene, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Dept Comp Sci & Technol, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Intelligent fault diagnosis; Rotating machinery; Dictionary learning; K-SVD; Sparse representation-based classification; SIGNALS;
D O I
10.1016/j.measurement.2018.01.036
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Wind power has developed rapidly over the past decade where study on wind turbine fault diagnosis methods are of great significance. The conventional intelligent diagnosis framework has led to impressive results in many studies over the last decade. Despite its popularity, the diagnosis result is affected severely by the feature selection and the performance of the classifiers. To address this issue, a novel method to diagnose wind turbine faults via dictionary learning and sparse representation-based classification (SRC) is proposed in this paper. Dictionary learning algorithm is capable of converting the atoms in the dictionary into the inherent structure of raw signals regardless of any prior knowledge, indicating that it is a self-adaptive feature extraction approach, which avoids the challenge of feature selection in traditional methods. Next, recognition and diagnosis can be solved by the simple SRC without additional classifier, exploiting the sparse nature that the key entries in sparse representation vector are assigned to the corresponding fault category for a test sample. The validity and superiority of the proposed method are validated by the experimental analysis. Moreover, we find that, in terms of robustness under variable conditions and anti-noise ability, the performance of the proposed method always significantly outperforms the traditional diagnosis methods, leading to a promising application prospect.
引用
收藏
页码:181 / 193
页数:13
相关论文
共 50 条
  • [41] TQWT-Based Multi-Scale Dictionary Learning for Rotating Machinery Fault Diagnosis
    Zhao, Zhibin
    Chen, Xuefeng
    Ding, Baoqing
    Wu, Shuming
    2017 13TH IEEE CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING (CASE), 2017, : 554 - 559
  • [42] Simultaneous discriminative projection and dictionary learning for sparse representation based classification
    Zhang, Haichao
    Zhang, Yanning
    Huang, Thomas S.
    PATTERN RECOGNITION, 2013, 46 (01) : 346 - 354
  • [43] Simultaneous dimensionality reduction and dictionary learning for sparse representation based classification
    Yang, Bao-Qing
    Gu, Chao-Chen
    Wu, Kai-Jie
    Zhang, Tao
    Guan, Xin-Ping
    MULTIMEDIA TOOLS AND APPLICATIONS, 2017, 76 (06) : 8969 - 8990
  • [44] Intelligent Fault Diagnosis of Rotating Machinery Based on Grey Similar Relation Degree
    Xiong, Wei
    Su, Yanping
    Zhou, Yanjie
    Wang, Hongjun
    Zhang, Wenbin
    2012 INTERNATIONAL CONFERENCE ON INDUSTRIAL CONTROL AND ELECTRONICS ENGINEERING (ICICEE), 2012, : 335 - 337
  • [45] Sparse Representation Based Fisher Discrimination Dictionary Learning for Image Classification
    Yang, Meng
    Zhang, Lei
    Feng, Xiangchu
    Zhang, David
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2014, 109 (03) : 209 - 232
  • [46] Intelligent Fault Diagnosis of Rotating Machinery Based on Deep Recurrent Neural Network
    Li, Xingqiu
    Jiang, Hongkai
    Hu, Yanan
    Xiong, Xiong
    2018 INTERNATIONAL CONFERENCE ON SENSING, DIAGNOSTICS, PROGNOSTICS, AND CONTROL (SDPC), 2018, : 67 - 72
  • [47] Laplacian sparse dictionary learning for image classification based on sparse representation
    Li, Fang
    Sheng, Jia
    Zhang, San-yuan
    FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2017, 18 (11) : 1795 - 1805
  • [48] A visual vibration characterization method for intelligent fault diagnosis of rotating machinery
    Peng, Cong
    Gao, Haining
    Liu, Xiaoyue
    Liu, Bin
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 192
  • [49] Laplacian sparse dictionary learning for image classification based on sparse representation
    Fang Li
    Jia Sheng
    San-yuan Zhang
    Frontiers of Information Technology & Electronic Engineering, 2017, 18 : 1795 - 1805
  • [50] Comparison of four direct classification methods for intelligent fault diagnosis of rotating machinery
    Dou, Dongyang
    Zhou, Shishuai
    APPLIED SOFT COMPUTING, 2016, 46 : 459 - 468