Intelligent fault diagnosis method for rotating machinery via dictionary learning and sparse representation-based classification

被引:63
|
作者
Han, Te [1 ]
Jiang, Dongxiang [1 ]
Sun, Yankui [2 ]
Wang, Nanfei [1 ]
Yang, Yizhou [1 ]
机构
[1] Tsinghua Univ, Dept Energy & Power Engn, State Key Lab Control & Simulat Power Syst & Gene, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Dept Comp Sci & Technol, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Intelligent fault diagnosis; Rotating machinery; Dictionary learning; K-SVD; Sparse representation-based classification; SIGNALS;
D O I
10.1016/j.measurement.2018.01.036
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Wind power has developed rapidly over the past decade where study on wind turbine fault diagnosis methods are of great significance. The conventional intelligent diagnosis framework has led to impressive results in many studies over the last decade. Despite its popularity, the diagnosis result is affected severely by the feature selection and the performance of the classifiers. To address this issue, a novel method to diagnose wind turbine faults via dictionary learning and sparse representation-based classification (SRC) is proposed in this paper. Dictionary learning algorithm is capable of converting the atoms in the dictionary into the inherent structure of raw signals regardless of any prior knowledge, indicating that it is a self-adaptive feature extraction approach, which avoids the challenge of feature selection in traditional methods. Next, recognition and diagnosis can be solved by the simple SRC without additional classifier, exploiting the sparse nature that the key entries in sparse representation vector are assigned to the corresponding fault category for a test sample. The validity and superiority of the proposed method are validated by the experimental analysis. Moreover, we find that, in terms of robustness under variable conditions and anti-noise ability, the performance of the proposed method always significantly outperforms the traditional diagnosis methods, leading to a promising application prospect.
引用
收藏
页码:181 / 193
页数:13
相关论文
共 50 条
  • [31] Research on Fault Diagnosis Method of Rotating Machinery Based on Deep Learning
    Chen, Zhouliang
    Li, Zhinong
    2017 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-HARBIN), 2017, : 1015 - +
  • [32] An Ensemble Learning-Based Fault Diagnosis Method for Rotating Machinery
    Tian, Jing
    Azarian, Michael H.
    Pecht, Michael
    Niu, Gang
    Li, Chuan
    2017 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-HARBIN), 2017, : 96 - 101
  • [33] Dictionary reduction in sparse representation-based classification of motor imagery EEG signals
    Sreeja, S. R.
    Samanta, Debasis
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (20) : 31157 - 31180
  • [34] Dictionary reduction in sparse representation-based classification of motor imagery EEG signals
    S. R. Sreeja
    Debasis Samanta
    Multimedia Tools and Applications, 2023, 82 : 31157 - 31180
  • [35] Deep Sparse Representation-Based Classification
    Abavisani, Mandi
    Patel, Vishal M.
    IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (06) : 948 - 952
  • [36] Data-driven dictionary design–based sparse classification method for intelligent fault diagnosis of planet bearings
    Kong, Yun
    Qin, Zhaoye
    Wang, Tianyang
    Rao, Meng
    Feng, Zhipeng
    Chu, Fulei
    Structural Health Monitoring, 2022, 21 (04) : 1313 - 1328
  • [37] An intelligent fault diagnosis method of rotating machinery using L1-regularized sparse filtering
    Qian, Weiwei
    Li, Shunming
    Wang, Jinrui
    An, Zenghui
    Jiang, Xingxing
    JOURNAL OF VIBROENGINEERING, 2018, 20 (08) : 2839 - 2854
  • [38] Deep Learning-Based Intelligent Fault Diagnosis Methods Toward Rotating Machinery
    Tang, Shengnan
    Yuan, Shouqi
    Zhu, Yong
    IEEE ACCESS, 2020, 8 : 9335 - 9346
  • [39] Intelligent rotating machinery fault diagnosis based on deep learning using data augmentation
    Xiang Li
    Wei Zhang
    Qian Ding
    Jian-Qiao Sun
    Journal of Intelligent Manufacturing, 2020, 31 : 433 - 452
  • [40] Extended sparse representation-based classification method for face recognition
    Peng, Yali
    Li, Lingjun
    Liu, Shigang
    Li, Jun
    Wang, Xili
    MACHINE VISION AND APPLICATIONS, 2018, 29 (06) : 991 - 1007