Intelligent fault diagnosis method for rotating machinery via dictionary learning and sparse representation-based classification

被引:63
|
作者
Han, Te [1 ]
Jiang, Dongxiang [1 ]
Sun, Yankui [2 ]
Wang, Nanfei [1 ]
Yang, Yizhou [1 ]
机构
[1] Tsinghua Univ, Dept Energy & Power Engn, State Key Lab Control & Simulat Power Syst & Gene, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Dept Comp Sci & Technol, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Intelligent fault diagnosis; Rotating machinery; Dictionary learning; K-SVD; Sparse representation-based classification; SIGNALS;
D O I
10.1016/j.measurement.2018.01.036
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Wind power has developed rapidly over the past decade where study on wind turbine fault diagnosis methods are of great significance. The conventional intelligent diagnosis framework has led to impressive results in many studies over the last decade. Despite its popularity, the diagnosis result is affected severely by the feature selection and the performance of the classifiers. To address this issue, a novel method to diagnose wind turbine faults via dictionary learning and sparse representation-based classification (SRC) is proposed in this paper. Dictionary learning algorithm is capable of converting the atoms in the dictionary into the inherent structure of raw signals regardless of any prior knowledge, indicating that it is a self-adaptive feature extraction approach, which avoids the challenge of feature selection in traditional methods. Next, recognition and diagnosis can be solved by the simple SRC without additional classifier, exploiting the sparse nature that the key entries in sparse representation vector are assigned to the corresponding fault category for a test sample. The validity and superiority of the proposed method are validated by the experimental analysis. Moreover, we find that, in terms of robustness under variable conditions and anti-noise ability, the performance of the proposed method always significantly outperforms the traditional diagnosis methods, leading to a promising application prospect.
引用
收藏
页码:181 / 193
页数:13
相关论文
共 50 条
  • [31] Deep Sparse Representation-Based Classification
    Abavisani, Mandi
    Patel, Vishal M.
    IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (06) : 948 - 952
  • [32] Enhanced dictionary learning based sparse classification approach with applications to planetary bearing fault diagnosis
    Kong, Yun
    Qin, Zhaoye
    Han, Qinkai
    Wang, Tianyang
    Chu, Fulei
    APPLIED ACOUSTICS, 2022, 196
  • [33] Latent Dictionary Learning for Sparse Representation based Classification
    Yang, Meng
    Dai, Dengxin
    Shen, Linlin
    Van Gool, Luc
    2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, : 4138 - 4145
  • [34] Sparse representation for image classification via paired dictionary learning
    Hui-Hung Wang
    Chia-Wei Tu
    Chen-Kuo Chiang
    Multimedia Tools and Applications, 2019, 78 : 16945 - 16963
  • [35] General normalized sparse filtering: A novel unsupervised learning method for rotating machinery fault diagnosis
    Zhang, Zongzhen
    Li, Shunming
    Wang, Jinrui
    Xin, Yu
    An, Zenghui
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2019, 124 : 596 - 612
  • [36] Sparse Representation-based Dictionary Learning Methods for Hyperspectral Super-Resolution
    Simsek, Murat
    Polat, Ediz
    2016 24TH SIGNAL PROCESSING AND COMMUNICATION APPLICATION CONFERENCE (SIU), 2016, : 753 - 756
  • [37] Deep transfer learning strategy in intelligent fault diagnosis of rotating machinery
    Tang, Shengnan
    Ma, Jingtao
    Yan, Zhengqi
    Zhu, Yong
    Khoo, Boo Cheong
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 134
  • [38] Sparse representation based on adaptive multiscale features for robust machinery fault diagnosis
    Zhu, Huijie
    Wang, Xinqing
    Zhao, Yang
    Li, Yanfeng
    Wang, Wenfu
    Li, Liping
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2015, 229 (12) : 2303 - 2313
  • [39] Adaptive Fusion based on Physics-Constrained Dictionary Learning for Fault Diagnosis of Rotating Machinery
    Hong, Sungjin
    Lu, Yanglong
    Dunning, Robert
    Ahn, Sung-Hoon
    Wang, Yan
    MANUFACTURING LETTERS, 2023, 35 : 999 - 1008
  • [40] Adaptive Fusion based on Physics-Constrained Dictionary Learning for Fault Diagnosis of Rotating Machinery
    Hong, Sungjin
    Lu, Yanglong
    Dunning, Robert
    Ahn, Sung-Hoon
    Wang, Yan
    MANUFACTURING LETTERS, 2023, 35 : 999 - 1008