Triphala and Its Constituents Ameliorate Visceral Adiposity From a High-fat Diet in Mice With Diet-induced Obesity

被引:1
|
作者
Gurjar, Shaifali [1 ]
Pal, Anuradha [1 ]
Kapur, Suman [1 ]
机构
[1] Irla Inst Technol & Sci BITS Pilani, Dept Biol Sci, Hyderabad, Andhra Pradesh, India
关键词
METABOLIC SYNDROME; IN-VITRO; AYURVEDIC FORMULATION; INSULIN-RESISTANCE; ANTIOXIDANT; PROTECTS; PRAMEHA; DISEASE; DRUG; AMLA;
D O I
暂无
中图分类号
R [医药、卫生];
学科分类号
10 ;
摘要
Context . In India, vaidyas (Ayurvedic physicians) traditionally administer triphala and its constituents as therapeutic agents for promoting digestion and satiety. Objective . The research team performed the present study to investigate the effects of triphala and its constituents (T bellirica [bibhitaki], T chebula [haritaki], and E officinalis [amalaki]) on the dietary induction of obesity (diet-induced obesity [DIO]), and other symptoms of visceral obesity syndrome, in mice fed a high-fat diet (HFD). Design . The research team obtained 42 fertile, male, Swiss albino mice, weighing 20 g each, and housed them individually in an approved small-animal facility, in a pathogen-free environment. The team generated DIO mice by feeding them a HFD. Setting . The study took place at the Birla Institute of Technology and Science (BITS) in Pilani, India. Intervention . The research team fed all mice, except those in a control group (ND), a HFD for 10 weeks beginning at 7 weeks of age, supplementing the HFDs with herbal treatments for 4 of the groups. The team divided the mice into six weight-matched groups of seven mice each: (1) normal diet (ND), (2) high-fat diet (HFD), (3) triphala (HFD+T), (4) amalaki (HFD+A), (5) haritaki (HFD+H), and (6) bibhitaki (HFD+B). Outcome Measures . The research team evaluated daily energy intake, fasting plasma glucose, serum lipid profile, and liver cytology. The team measured food and energy intake daily for 10 weeks and measured the body weight of each mouse every third day during the course of the experiment. The team drew blood samples at 2, 4, 8, and 10 weeks posttreatment and determined fasting plasma-glucose concentrations and fasting plasma concentrations of cholesterol, triglycerides (TG), LDL, HDL, and plasma alanine transaminase (ALT) using commercial kits. At the completion of the study, a pathologist examined the livers and diagnosed a fatty liver based on the presence of macrovesicular or microvesicular fat in the hepatocytes. Results . The research team's results showed that mice fed a HFD for a 10-week period, supplemented with herbal preparation(s) of triphala or its constituents, resulted in significant reductions in body weight (P<.0001), energy intake, and percentage of body fat (P<.001), as compared with mice in the HFD group. Herbal treatment significantly improved the lipid profiles of the mice by lowering serum total cholesterol (Total-C), TG, and low-density lipoprotein cholesterol (LDL-C) and increasing levels of high-density lipoprotein cholesterol (HDL-C) as compared to the mice in the HFD group. The research team also found that herbal treatment attenuated glucose levels, oral glucose tolerance as measured by the oral glucose tolerance test (OGTT), and levels of ALT. In addition to treatment with its three individual components, treatment with a popular Ayurvedic formulation of triphala also reversed the pathological changes in liver tissue and decreased the relative weight of visceral adipose fat pads. Conclusions . The present findings suggest that triphala and its constituents can counter the effects of an environment (ie, high dietary intake of fats) and have the potential for use as antiobesity agents with desirable lipid-profile modulating properties.
引用
收藏
页码:38 / 45
页数:8
相关论文
共 50 条
  • [1] High-fat diet-induced obesity in myostatin null mice
    Dilger, Anna Carol
    Gabriel, Savannah R.
    Kutzler, Louis W.
    Boler, Dustin D.
    Killefer, John
    FASEB JOURNAL, 2010, 24
  • [2] Saponins from platycodi radix ameliorate high fat diet-induced obesity in mice
    Han, UK
    Zheng, YN
    Xu, BJ
    Okuda, H
    Kimura, Y
    JOURNAL OF NUTRITION, 2002, 132 (08): : 2241 - 2245
  • [3] Diet Change Improves Obesity and Lipid Deposition in High-Fat Diet-Induced Mice
    Ji, Tengteng
    Fang, Bing
    Wu, Fang
    Liu, Yaqiong
    Cheng, Le
    Li, Yixuan
    Wang, Ran
    Zhu, Longjiao
    NUTRIENTS, 2023, 15 (23)
  • [4] Gelatinases impart susceptibility to high-fat diet-induced obesity in mice
    Biga, Peggy R.
    Froehlich, Jacob M.
    Greenlee, Kendra J.
    Galt, Nicholas J.
    Meyer, Ben M.
    Christensen, Delci J.
    JOURNAL OF NUTRITIONAL BIOCHEMISTRY, 2013, 24 (08): : 1462 - 1468
  • [5] Inactivation of SPARC enhances high-fat diet-induced obesity in mice
    Nie, Jing
    Bradshaw, Amy D.
    Delany, Anne M.
    Sage, E. Helene
    CONNECTIVE TISSUE RESEARCH, 2011, 52 (02) : 99 - 108
  • [6] Berberine inhibits adipogenesis in high-fat diet-induced obesity mice
    Hu, Yueshan
    Davies, Gareth E.
    FITOTERAPIA, 2010, 81 (05) : 358 - 366
  • [7] Cholecystokinin Knockout Mice Are Resistant to High-Fat Diet-Induced Obesity
    Lo, Chun-Min
    King, Alexandra
    Samuelson, Linda C.
    Kindel, Tammy Lyn
    Rider, Therese
    Jandacek, Ronald J.
    Raybould, Helen E.
    Woods, Stephen C.
    Tso, Patrick
    GASTROENTEROLOGY, 2010, 138 (05) : 1997 - 2005
  • [8] The crude guava polysaccharides ameliorate high-fat diet-induced obesity in mice via reshaping gut microbiota
    Li, Yuanyuan
    Bai, Dongsong
    Lu, Yongming
    Chen, Jia
    Yang, Haoning
    Mu, Yu
    Xu, Jialin
    Huang, Xueshi
    Li, Liya
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2022, 213 : 234 - 246
  • [9] High-fat diet-induced obesity in animal models
    Hariri, Niloofar
    Thibault, Louise
    NUTRITION RESEARCH REVIEWS, 2010, 23 (02) : 270 - 299
  • [10] Zeolite improves high-fat diet-induced hyperglycemia, hyperlipidemia and obesity in mice
    Kubo, Kazuhiro
    Kawai, Yasuyuki
    ANNALS OF NUTRITION AND METABOLISM, 2023, 79 : 958 - 958