A semantic segmentation method for Satellite Image Change Detection

被引:0
作者
Zhang, Jiahao [1 ]
Chen, Bo [1 ]
Zhou, Jianbang [1 ]
Yang, Jingkun [1 ]
Chen, Zhong [1 ]
Yang, Jian [2 ]
Zhang, Yanna [3 ]
机构
[1] Huazhong Univ Sci & Technol, Natl Key Lab Sci & Technol Multispectral Informat, Inst Artificial Intelligence & Automat, Wuhan, Peoples R China
[2] Chinese Acad Sci, Inst Aerosp Informat Innovat, Beijing, Peoples R China
[3] Henan Univ, Dept Lab & Equipment Management, Kaifeng, Peoples R China
来源
MIPPR 2019: AUTOMATIC TARGET RECOGNITION AND NAVIGATION | 2020年 / 11429卷
关键词
change detection; semantic segmentation; convolutional neural network; Deep learning;
D O I
10.1117/12.2538085
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We apply the semantic segmentation method in deep network to high precision satellite image change detection, and propose a network framework to improve the detection performance.We directly processed the image after registration, without the steps of radiometric correction, and avoided the tedious steps of manual feature design by traditional methods.We tried to use Unet and Deeplab v3 model to divide the change area, and added the structure of jumping connection on the basis of Deeplab network, which made the edge of the detection graph more accurate and improved the performance of the network.The test results show that this method is effective for detecting the change of high-precision remote sensing images.
引用
收藏
页数:7
相关论文
共 21 条
[1]  
[Anonymous], ARXIV14091556V6
[2]  
[Anonymous], 2015, PROC INT C LEARN REP
[3]   A minimum-cost thresholding technique for unsupervised change detection [J].
Bruzzone, L ;
Prieto, DF .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2000, 21 (18) :3539-3544
[4]   Automatic analysis of the difference image for unsupervised change detection [J].
Bruzzone, L ;
Prieto, DF .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2000, 38 (03) :1171-1182
[5]   Digital change detection with the aid of multiresolution wavelet analysis [J].
Carvalho, LMT ;
Fonseca, LMG ;
Murtagh, F ;
Clevers, JGPW .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2001, 22 (18) :3871-3876
[6]  
Chen LC., 2017, ARXIV170605587V3
[7]   PCA-based land-use change detection and analysis using multitemporal and multisensor satellite data [J].
Deng, J. S. ;
Wang, K. ;
Deng, Y. H. ;
Qi, G. J. .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2008, 29 (16) :4823-4838
[8]   Background and foreground modeling using nonparametric kernel density estimation for visual surveillance [J].
Elgammal, A ;
Duraiswami, R ;
Harwood, D ;
Davis, LS .
PROCEEDINGS OF THE IEEE, 2002, 90 (07) :1151-1163
[9]   Change Detection in Synthetic Aperture Radar Images Based on Deep Neural Networks [J].
Gong, Maoguo ;
Zhao, Jiaojiao ;
Liu, Jia ;
Miao, Qiguang ;
Jiao, Licheng .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2016, 27 (01) :125-138
[10]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778