Terahertz Light Sources by Electronic-Oscillator-Driven Second-Harmonic Generation in Cavities Featuring Extreme Confinement

被引:3
作者
Choi, Hyeongrak [1 ,2 ]
Ateshian, Lamia [1 ,2 ]
Heuck, Mikkel [1 ,2 ,3 ]
Englund, Dirk [1 ,2 ]
机构
[1] MIT, Res Lab Elect, Cambridge, MA 02139 USA
[2] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[3] Tech Univ Denmark, Dept Elect & Photon Engn, DK-2800 Lyngby, Denmark
基金
美国国家科学基金会;
关键词
TIME-DOMAIN SPECTROSCOPY; NONLINEAR SUSCEPTIBILITY; OPTICAL SUSCEPTIBILITIES; DIELECTRIC-PROPERTIES; FREQUENCY-GENERATION; THZ; DISPERSION; LASER; POWER; SIMULATION;
D O I
10.1103/PhysRevApplied.18.044019
中图分类号
O59 [应用物理学];
学科分类号
摘要
The majority of sources of coherent optical radiation rely on laser oscillators driven by population inversion. Despite their technological importance in communications, medicine, industry, and other fields, it remains a challenge to access the spectral range of 0.1-10 THz (the "terahertz gap"), a frequency band for applications ranging from spectroscopy to security and high-speed wireless communications. Here, we propose a way to produce coherent radiation spanning the THz gap by efficient second-harmonic generation in low-loss dielectric structures, starting from technologically mature electronic oscillators in the approximately 100 GHz range. To achieve this goal, we introduce hybrid THz-band dielectric cavity designs that combine (1) extreme field concentration in high-quality-factor resonators with (2) nonlinear materials enhanced by phonon resonances. We theoretically predict conversion efficiencies of >103%/W and the potential to bridge the THz gap with 1 W of input power. This approach enables efficient, cascaded parametric frequency converters, and light sources extensible into the mid-IR spectrum and beyond.
引用
收藏
页数:19
相关论文
共 73 条
[1]   Terahertz electronics: Application of wave propagation and nonlinear processes [J].
Aghasi, H. ;
Naghavi, S. M. H. ;
Tavakoli Taba, M. ;
Aseeri, M. A. ;
Cathelin, A. ;
Afshari, E. .
APPLIED PHYSICS REVIEWS, 2020, 7 (02)
[2]   Infrared study of the lattice vibrations in LiTaO3 [J].
Barker, A. S., Jr. ;
Ballman, A. A. ;
Ditzenberger, J. A. .
PHYSICAL REVIEW B-SOLID STATE, 1970, 2 (10) :4233-4239
[3]   DIELECTRIC DISPERSION AND PHONON LINE SHAPE IN GALLIUM PHOSPHIDE [J].
BARKER, AS .
PHYSICAL REVIEW, 1968, 165 (03) :917-&
[4]   DIELECTRIC PROPERTIES AND OPTICAL PHONONS IN LINBO3 [J].
BARKER, AS ;
LOUDON, R .
PHYSICAL REVIEW, 1967, 158 (02) :433-+
[5]   SUM-FREQUENCY GENERATION WITH A FREE-ELECTRON LASER - A STUDY OF GALLIUM-PHOSPHIDE [J].
BARMENTLO, M ;
THOOFT, GW ;
ELIEL, ER ;
VANDERHAM, EWM ;
VREHEN, QHF ;
VANDERMEER, AFG ;
VANAMERSFOORT, PW .
PHYSICAL REVIEW A, 1994, 50 (01) :R14-R17
[6]  
Berger L., 2006, CARBON, V1, P2
[7]   Generation and Stabilization of Continuous-Wave THz Emission From a Bi-Color VECSEL [J].
Bondaz, Thibault A. G. ;
Laurain, Alexandre ;
Moloney, Jerome, V ;
McInerney, John G. .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2019, 31 (19) :1569-1572
[8]   MICROWAVE NONLINEAR SUSCEPTIBILITIES DUE TO ELECTRONIC AND IONIC ANHARMONICITIES IN ACENTRIC CRYSTALS [J].
BOYD, GD ;
BRIDGES, TJ ;
POLLACK, MA ;
TURNER, EH .
PHYSICAL REVIEW LETTERS, 1971, 26 (07) :387-&
[9]  
Boyd RW., 2020, Nonlinear optics, V4
[10]   Second harmonic generation in photonic crystal cavities in (111)-oriented GaAs [J].
Buckley, Sonia ;
Radulaski, Marina ;
Biermann, Klaus ;
Vuckovic, Jelena .
APPLIED PHYSICS LETTERS, 2013, 103 (21)