Classification of the Manin triples for complex reductive lie algebras

被引:19
作者
Delorme, P [1 ]
机构
[1] Univ Mediterrannee, UPR 9016 CNRS, Inst Math Luminy, F-13288 Marseille 09, France
关键词
reductive lie algebra; manin triple; lie bialgebra;
D O I
10.1006/jabr.2001.8887
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study real and complex Manin triples for a complex reductive Lie algebra g. First, we generalize results of E. Karolinsky (1996, Math. Phys. Anal. Geom 3, 545-563; 1999, Preprint math.QA.9901073) on the classification of Lagrangian subalgebras. Then we show that, if g is noncommutative, one can attach to each Manin triple in g another one for a strictly smaller reductive complex Lie subalgebra of g. This gives a powerful tool for induction. Then we classify complex Marlin triples in terms of what we call generalized Belavin-Drinfeld data. This generalizes, by other methods, the classification of A. Belavin and V. G. Drinfeld of certain r-matrices, i.e., the solutions of modified triangle equations for constants (cf. A. Belavin and V. G. Drinfeld, "Triangle Equations and Simple Lie Algebras," Mathematical Physics Reviews, Vol. 4, pp. 93-165, Harwood Academic, Chur, 1984, Theorem 6.1). We get also results for real Martin triples. In passing, we retrieve a result of A. Panov (1999, Preprint math.QA.9904156) which classifies certain Lie bialgebra structures on a real simple Lie algebra. (C) 2001 Elsevier Science.
引用
收藏
页码:97 / 174
页数:78
相关论文
共 17 条
[1]  
BELAVIN AA, 1984, SOV SCI REV C, V4, P93
[2]  
Borel A., 1991, GRADUATE TEXT MATH, V126
[3]  
BOURBAKI N, 1975, ACTUALITES SCI IND, V1285
[4]  
Drinfel'd V. G., 1987, P INT C MATHEMATICIA, V1, P798
[5]  
GANTMACHER F, 1939, MAT SBORNIK, V5, P101
[6]  
Karolinskii EA, 1998, DOKL AKAD NAUK+, V359, P13
[7]  
KAROLINSKY E, 1999, MATHQA9901073
[8]  
KAROLINSKY E, 1996, MATH PHYS ANAL GEOM, V3, P545
[9]  
KOSMANNSCHWARZB.Y, 1996, P CIMPA SCH POND U I
[10]   ORBITS OF AFFINE SYMMETRIC SPACES UNDER THE ACTION OF MINIMAL PARABOLIC SUBGROUPS [J].
MATSUKI, T .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1979, 31 (02) :331-357