Modelling the ITER glow discharge plasma

被引:6
作者
Kogut, D. [1 ]
Douai, D. [1 ]
Hagelaar, G. [2 ,3 ]
Pitts, R. A. [4 ]
机构
[1] CEA, IRFM, F-13108 St Paul Les Durance, France
[2] Univ Toulouse, UPS, INPT, LAPLACE Lab Plasma & Convers Energie, F-31062 Toulouse 9, France
[3] CNRS, LAPLACE, F-31062 Toulouse, France
[4] ITER Org, F-13115 St Paul Les Durance, France
基金
欧盟地平线“2020”;
关键词
WALL;
D O I
10.1016/j.jnucmat.2014.10.078
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The ITER glow discharge cleaning (GDC) system (Maruyama et al., 2012) is aimed to prepare in-vessel component surfaces prior to the machine start-up. In order to assess glow discharge uniformity and wall coverage, thus conditioning efficiency of the system, a new 2D multi-fluid model has been developed (Hagelaar, 2012). In this work the model is compared with published experimental data on GDC wall ion fluxes in JET and RFX (Douai et al., 2013; Canton et al., 2013). The simulations of H-2-GDC in ITER for the case of 1 or 2 anodes indicate a good level of homogeneity of plasma parameters in the negative glow and of the wall ion flux in the common pressure domain for GDC: 0.1-0.5 Pa. Although the model geometry does not allow simulation of all seven ITER anodes operating simultaneously, the results can be extrapolated to the full system with an average ion current density of 0.21 A/m(2), which is comparable to JET (0.10 A/m(2)). (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:1113 / 1116
页数:4
相关论文
共 11 条
[1]  
[Anonymous], 1991, J PHYS D APPL PHYS
[2]   Studies of spatial uniformity of glow discharge cleaning plasmas on the RFX-mod device [J].
Canton, A. ;
Dal Bello, S. ;
Agostini, M. ;
Carraro, L. ;
Cavazzana, R. ;
Fiameni, S. ;
Grando, L. ;
Spolaore, M. ;
Zuin, M. .
JOURNAL OF NUCLEAR MATERIALS, 2013, 438 :S1164-S1167
[3]   Wall conditioning of JET with the ITER-Like Wall [J].
Douai, D. ;
Brezinsek, S. ;
Esser, H. G. ;
Joffrin, E. ;
Keenan, T. ;
Knipe, S. ;
Kogut, D. ;
Lomas, P. J. ;
Marsen, S. ;
Nunes, I. ;
Philipps, V. ;
Pitts, R. A. ;
Shimada, M. ;
de Vries, P. .
JOURNAL OF NUCLEAR MATERIALS, 2013, 438 :S1172-S1176
[4]  
Hagelaar G.J.M., 2012, P ESCAMPIG 2012 VIAN
[5]   Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models [J].
Hagelaar, GJM ;
Pitchford, LC .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2005, 14 (04) :722-733
[6]  
Kogut D., P EPS 2013 ESP FINL
[7]  
Maruyama S., P IAEA FEC 2012 SAN
[8]   A shaped First Wall for ITER [J].
Mitteau, R. ;
Stangeby, P. ;
Lowry, C. ;
Firdaouss, M. ;
Labidi, H. ;
Loarte, A. ;
Merola, M. ;
Pitts, R. ;
Raffray, R. .
JOURNAL OF NUCLEAR MATERIALS, 2011, 415 (01) :S969-S972
[9]   Wall conditioning on ITER [J].
Shimada, Michiya ;
Pitts, Richard A. .
JOURNAL OF NUCLEAR MATERIALS, 2011, 415 (01) :S1013-S1016
[10]   Wall conditioning in fusion devices and its influence on plasma performance [J].
Winter, J .
PLASMA PHYSICS AND CONTROLLED FUSION, 1996, 38 (09) :1503-1542