Entanglement and the geometry of two qubits

被引:25
作者
Avron, J. E. [1 ]
Kenneth, O. [1 ]
机构
[1] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel
基金
以色列科学基金会;
关键词
MIXED STATES; BREAKING CHANNELS; DENSITY-MATRICES; QUANTUM STATES; INEQUALITIES; SEPARABILITY; MAPS;
D O I
10.1016/j.aop.2008.07.007
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Two qubits is the simplest system where the notions of separable and entangled states and entanglement witnesses first appear. We give a three-dimensional geometric description of these notions. This description, however, carries no quantitative information on the measure of entanglement. A four-dimensional description captures also the entanglement measure. We give a neat formula for the Bell states which leads to a slick proof of the fundamental teleportation identity. We describe optimal distillation of two qubits geometrically and present a simple geometric proof of the Peres-Horodecki separability criterion. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:470 / 496
页数:27
相关论文
共 55 条
[1]  
[Anonymous], 1995, QUANTUM THEORY CONCE
[2]  
[Anonymous], 1970, CONVEX ANAL
[3]  
[Anonymous], 1993, SPEAKABLE UNSPEAKABL
[4]   Visualizing two qubits [J].
Avron, J. E. ;
Bisker, G. ;
Kenneth, O. .
JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (10)
[5]  
Bell J.S., 1964, PHYSICS, V1, P195, DOI [10.1103/Physics-PhysiqueFizika.1.195, DOI 10.1103/PHYSICSPHYSIQUEFIZIKA.1.195, 10.1103/PhysicsPhysiqueFizika.1.195]
[6]  
Bengtsson I., 2017, GEOMETRY QUANTUM STA, DOI DOI 10.1017/9781139207010
[7]   Exact and asymptotic measures of multipartite pure-state entanglement [J].
Bennett, Charles H., 2001, American Inst of Physics, Woodbury (63)
[8]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[9]   Concentrating partial entanglement by local operations [J].
Bennett, CH ;
Bernstein, HJ ;
Popescu, S ;
Schumacher, B .
PHYSICAL REVIEW A, 1996, 53 (04) :2046-2052
[10]   Positive operator valued measure in quantum information processing [J].
Brandt, HE .
AMERICAN JOURNAL OF PHYSICS, 1999, 67 (05) :434-439