Quasisymmetric minimality on packing dimension for Moran sets

被引:14
作者
Li, Yanzhe [1 ]
Wu, Min [1 ]
Xi, Lifeng [2 ]
机构
[1] S China Univ Technol, Dept Math, Guangzhou 510641, Guangdong, Peoples R China
[2] Zhejiang Wanli Univ, Inst Math, Ningbo 315100, Zhejiang, Peoples R China
关键词
Quasisymmetric mapping; Packing dimension; Moran set; HAUSDORFF DIMENSION; CONFORMAL MAPPINGS;
D O I
10.1016/j.jmaa.2013.04.085
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove that if sup(k) n(k) < infinity and c(k,1) = c(k,2) = . . . = c(k,nk) for any k, or if c* = inf(kj) c(k.j) > 0, the Moran set E is an element of M(I, {n(k)}, {c(kj))) on the line with packing dimension 1 are quasisymmetrically packing-minimal. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:324 / 334
页数:11
相关论文
共 13 条
[1]  
Bishop CJ, 1999, ANN ACAD SCI FENN-M, V24, P397
[2]   QUASISYMMETRICALLY MINIMAL MORAN SETS AND HAUSDORFF DIMENSION [J].
Dai, Yuxia ;
Wen, Zhixiong ;
Xi, Lifeng ;
Xiong, Ying .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2011, 36 (01) :139-151
[3]  
Falconer K., 1997, Techniques in Fractal Geometry
[4]   Some dimensional results for homogeneous Moran sets [J].
Feng, DJ ;
Wen, ZY ;
Wu, J .
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1997, 40 (05) :475-482
[5]  
GEHRING FW, 1973, J LOND MATH SOC, V6, P504
[6]   LP-INTEGRABILITY OF PARTIAL DERIVATIVES OF A QUASICONFORMAL MAPPING [J].
GEHRING, FW .
ACTA MATHEMATICA, 1973, 130 (3-4) :265-277
[7]  
Hakobyan H., 2006, J CONTEMP MATH ANAL+, V41, P13
[8]   Quasi symmetrically minimal uniform Cantor sets [J].
Hu, Meidan ;
Wen, Shengyou .
TOPOLOGY AND ITS APPLICATIONS, 2008, 155 (06) :515-521
[9]  
Hua S, 1996, PROG NAT SCI, V6, P148
[10]  
Hua S., 1994, ACTA MATH APPL SIN, V17, P551