Arithmetical properties of the number of t-core partitions

被引:14
作者
Chen, Shichao [1 ]
机构
[1] Henan Univ, Dept Math, Kaifeng 475001, Henan, Peoples R China
关键词
t-core partition; Congruence; Modular form; CONGRUENCES; BLOCKS;
D O I
10.1007/s11139-007-9045-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let I >={lambda (1)a parts per thousand yena <...a <...a <...a parts per thousand yen lambda (s) a parts per thousand yen1} be a partition of an integer n. Then the Ferrers-Young diagram of I > is an array of nodes with lambda (i) nodes in the ith row. Let lambda (j) ' denote the number of nodes in column j in the Ferrers-Young diagram of I >. The hook number of the (i,j) node in the Ferrers-Young diagram of I > is denoted by H(i,j):=lambda (i) +lambda (j) '-i-j+1. A partition of n is called a t-core partition of n if none of the hook numbers is a multiple of t. The number of t-core partitions of n is denoted by a(t;n). In the present paper, some congruences and distribution properties of the number of 2 (t) -core partitions of n are obtained. A simple convolution identity for t-cores is also given.
引用
收藏
页码:103 / 112
页数:10
相关论文
共 26 条
[1]   PARTITION-IDENTITIES AND LABELS FOR SOME MODULAR CHARACTERS [J].
ANDREWS, GE ;
BESSENRODT, C ;
OLSSON, JB .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 344 (02) :597-615
[2]  
[Anonymous], 1984, The Theory of Partitions
[3]  
[Anonymous], NAGOYA MATH J
[4]   Congruences for 2t core partition functions [J].
Boylan, M .
JOURNAL OF NUMBER THEORY, 2002, 92 (01) :131-138
[5]  
Brauer R., 1963, Lectures on Modern Mathematics, V1, P133
[6]   THE BLOCKS OF FINITE GENERAL LINEAR AND UNITARY GROUPS [J].
FONG, P ;
SRINIVASAN, B .
INVENTIONES MATHEMATICAE, 1982, 69 (01) :109-153
[7]   CRANKS AND T-CORES [J].
GARVAN, F ;
KIM, DS ;
STANTON, D .
INVENTIONES MATHEMATICAE, 1990, 101 (01) :1-17
[8]  
GARVAN FG, 1993, P LOND MATH SOC, V66, P449
[9]  
Gordon B., 1993, CONT MATH, V143, P415
[10]   Defect zero p-blocks for finite simple groups [J].
Granville, A ;
Ono, K .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (01) :331-347