On reversible maps and symmetric periodic points

被引:5
|
作者
Kang, Jungsoo [1 ]
机构
[1] Westfalische Wilhelms Univ Munster, Math Inst, Munster, Germany
关键词
POINCARE-BIRKHOFF THEOREM; GEOMETRIC THEOREM; PROOF; DIFFEOMORPHISMS; HOMEOMORPHISMS; DYNAMICS; SURFACES; ORBITS; PLANE; FLOWS;
D O I
10.1017/etds.2016.71
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In reversible dynamical systems, it is of great importance to understand symmetric features. The aim of this paper is to explore symmetric periodic points of reversible maps on planar domains invariant under a reflection. We extend Franks' theorem on a dichotomy of the number of periodic points of area-preserving maps on the annulus to symmetric periodic points of area-preserving reversible maps. Interestingly, even a non-symmetric periodic point guarantees infinitely many symmetric periodic points. We prove an analogous statement for symmetric odd-periodic points of area-preserving reversible maps isotopic to the identity, which can be applied to dynamical systems with double symmetries. Our approach is simple, elementary, and far from Franks' proof. We also show that a reversible map has a symmetric fixed point if and only if it is a twist map which generalizes a boundary twist condition on the closed annulus in the sense of Poincare-Birkhoff. Applications to symmetric periodic orbits in reversible dynamical systems with two degrees of freedom are briefly discussed.
引用
收藏
页码:1479 / 1498
页数:20
相关论文
共 50 条
  • [1] Dynamics of annulus maps II: Periodic points for coverings
    Iglesias, Jorge
    Portela, Aldo
    Rovella, Alvaro
    Xavier, Juliana
    FUNDAMENTA MATHEMATICAE, 2016, 235 (03) : 257 - 276
  • [2] Growth of the number of periodic points for meromorphic maps
    Tien-Cuong Dinh
    Viet-Anh Nguyen
    Tuyen Trung Truong
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2017, 49 (06) : 947 - 964
  • [3] RATIONAL PERIODIC POINTS FOR QUADRATIC MAPS
    Canci, Jung Kyu
    ANNALES DE L INSTITUT FOURIER, 2010, 60 (03) : 953 - 985
  • [4] Perpetual points and periodic perpetual loci in maps
    Dudkowski, Dawid
    Prasad, Awadhesh
    Kapitaniak, Tomasz
    CHAOS, 2016, 26 (10)
  • [5] Local dendrite maps without periodic points
    Abdelli, Hafedh
    Naghmouchi, Issam
    Rezgui, Houssem Eddine
    TOPOLOGY AND ITS APPLICATIONS, 2022, 305
  • [6] ON DENSITY OF PERIODIC POINTS FOR INDUCED HYPERSPACE MAPS
    Mendez, Hector
    TOPOLOGY PROCEEDINGS, VOL 35, 2010, 35 : 281 - 290
  • [7] Remarks on the Existence of Periodic Points for Continuous Maps on Dendrites
    Makhrova, E. N.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2022, 43 (07) : 1711 - 1719
  • [8] Periodic Points for Sphere Maps Preserving Monopole Foliations
    Graff, Grzegorz
    Misiurewicz, Michal
    Nowak-Przygodzki, Piotr
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2019, 18 (02) : 533 - 546
  • [9] Super-potentials, densities of currents and number of periodic points for holomorphic maps
    Tien-Cuong Dinh
    Viet-Anh Nguyen
    Duc-Viet Vu
    ADVANCES IN MATHEMATICS, 2018, 331 : 874 - 907
  • [10] Periodic points for area-preserving birational maps of surfaces
    Iwasaki, Katsunori
    Uehara, Takato
    MATHEMATISCHE ZEITSCHRIFT, 2010, 266 (02) : 289 - 318