HARMONIC LIMITS OF DYNAMICAL SYSTEMS

被引:0
|
作者
Wichtrey, Tobias [1 ]
机构
[1] Univ Augsburg, Inst Math, D-86135 Augsburg, Germany
关键词
Dynamical systems; ergodic theory; rotational behaviour; linear differential equations;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we analyze the rotational behaviour of dynamical systems, particulary of solutions of ODEs. With rotational behaviour we mean the existence of rotational factor maps, i.e., semi-conjugations to rotations in the complex plane. In order to analyze this kind of rotational behaviour, we introduce harmonic limits lim(T ->infinity) 1/T integral(T)(0) e(it omega) f(Phi(t)x)dt. We discuss the connection between harmonic limits and rotational factor maps, and some properties of the limits, e.g., existence under the presence of an invariant measure by the Wiener-Wintner Ergodic Theorem. Finally, we look at linear differential equations (autonomous and periodic), and show the connection between the frequencies of the rotational factor maps and the imaginary parts of the eigenvalues of the system matrix (or of the Floquet exponents in the periodic case).
引用
收藏
页码:1432 / 1439
页数:8
相关论文
共 50 条
  • [41] Numerical instability and dynamical systems
    Ardourel V.
    Jebeile J.
    European Journal for Philosophy of Science, 2021, 11 (2)
  • [42] Analysis of seismic dynamical systems
    M. Urquizú
    A. M. Correig
    Journal of Seismology, 1998, 2 : 159 - 171
  • [43] Modular dynamical systems on networks
    DeVille, Lee
    Lerman, Eugene
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2015, 17 (12) : 2977 - 3013
  • [44] Learning Trajectories of Dynamical Systems
    Hein, Helle
    Lepik, Uelo
    MATHEMATICAL MODELLING AND ANALYSIS, 2012, 17 (04) : 519 - 531
  • [45] Analog computation with dynamical systems
    Siegelmann, HT
    Fishman, S
    PHYSICA D-NONLINEAR PHENOMENA, 1998, 120 (1-2) : 214 - 235
  • [46] DYNAMICAL SYSTEMS ON FINSLER MODULES
    Hassani, M.
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2012, 4 (01): : 19 - 24
  • [47] Complementarity in Classical Dynamical Systems
    Peter beim Graben
    Harald Atmanspacher
    Foundations of Physics, 2006, 36 : 291 - 306
  • [48] Efficient estimation of dynamical systems
    Iacus, SM
    STUDIES IN NONLINEAR DYNAMICS AND ECONOMETRICS, 2000, 4 (04): : 213 - 226
  • [49] Musical automata as dynamical systems
    Michael, David M.
    ADAPTIVE BEHAVIOR, 2006, 14 (02) : 139 - 146
  • [50] Analysis of seismic dynamical systems
    Urquizú, M
    Correig, AM
    JOURNAL OF SEISMOLOGY, 1998, 2 (02) : 159 - 171