HARMONIC LIMITS OF DYNAMICAL SYSTEMS

被引:0
|
作者
Wichtrey, Tobias [1 ]
机构
[1] Univ Augsburg, Inst Math, D-86135 Augsburg, Germany
关键词
Dynamical systems; ergodic theory; rotational behaviour; linear differential equations;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we analyze the rotational behaviour of dynamical systems, particulary of solutions of ODEs. With rotational behaviour we mean the existence of rotational factor maps, i.e., semi-conjugations to rotations in the complex plane. In order to analyze this kind of rotational behaviour, we introduce harmonic limits lim(T ->infinity) 1/T integral(T)(0) e(it omega) f(Phi(t)x)dt. We discuss the connection between harmonic limits and rotational factor maps, and some properties of the limits, e.g., existence under the presence of an invariant measure by the Wiener-Wintner Ergodic Theorem. Finally, we look at linear differential equations (autonomous and periodic), and show the connection between the frequencies of the rotational factor maps and the imaginary parts of the eigenvalues of the system matrix (or of the Floquet exponents in the periodic case).
引用
收藏
页码:1432 / 1439
页数:8
相关论文
共 50 条
  • [31] Frontiers and symmetries of dynamical systems
    Diaz-Cano, A.
    Gonzalez-Gascon, F.
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2010, 25 (04): : 501 - 518
  • [32] Dynamical systems and topology optimization
    Anders Klarbring
    Bo Torstenfelt
    Structural and Multidisciplinary Optimization, 2010, 42 : 179 - 192
  • [33] Order and Chaos in Dynamical Systems
    George Contopoulos
    Milan Journal of Mathematics, 2009, 77 : 101 - 126
  • [34] DYNAMICAL ANALYSIS OF NUMERICAL SYSTEMS
    BATTERSON, S
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 1995, 2 (03) : 297 - 310
  • [35] Dynamical systems and topology optimization
    Klarbring, Anders
    Torstenfelt, Bo
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2010, 42 (02) : 179 - 192
  • [36] A dynamical systems approach to causation
    Fazekas, Peter
    Gyenis, Balazs
    Hofer-Szabo, Gabor
    Kertesz, Gergely
    SYNTHESE, 2021, 198 (07) : 6065 - 6087
  • [37] On Rank Driven Dynamical Systems
    J. J. P. Veerman
    F. J. Prieto
    Journal of Statistical Physics, 2014, 156 : 455 - 472
  • [38] Waveformer for modeling dynamical systems
    Navaneeth, N.
    Chakraborty, Souvik
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2024, 211
  • [39] Computation with perturbed dynamical systems
    Bournez, Olivier
    Graca, Daniel S.
    Hainry, Emmanuel
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2013, 79 (05) : 714 - 724
  • [40] TENSOR SUM AND DYNAMICAL SYSTEMS
    D.SENTHILKUMAR
    P.CHANDRA KALA
    ActaMathematicaScientia, 2014, 34 (06) : 1935 - 1946