HARMONIC LIMITS OF DYNAMICAL SYSTEMS

被引:0
|
作者
Wichtrey, Tobias [1 ]
机构
[1] Univ Augsburg, Inst Math, D-86135 Augsburg, Germany
关键词
Dynamical systems; ergodic theory; rotational behaviour; linear differential equations;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we analyze the rotational behaviour of dynamical systems, particulary of solutions of ODEs. With rotational behaviour we mean the existence of rotational factor maps, i.e., semi-conjugations to rotations in the complex plane. In order to analyze this kind of rotational behaviour, we introduce harmonic limits lim(T ->infinity) 1/T integral(T)(0) e(it omega) f(Phi(t)x)dt. We discuss the connection between harmonic limits and rotational factor maps, and some properties of the limits, e.g., existence under the presence of an invariant measure by the Wiener-Wintner Ergodic Theorem. Finally, we look at linear differential equations (autonomous and periodic), and show the connection between the frequencies of the rotational factor maps and the imaginary parts of the eigenvalues of the system matrix (or of the Floquet exponents in the periodic case).
引用
收藏
页码:1432 / 1439
页数:8
相关论文
共 50 条
  • [11] Dynamical systems on hypergraphs
    Carletti, Timoteo
    Fanelli, Duccio
    Nicoletti, Sara
    JOURNAL OF PHYSICS-COMPLEXITY, 2020, 1 (03):
  • [12] Dynamical Systems and Sheaves
    Patrick Schultz
    David I. Spivak
    Christina Vasilakopoulou
    Applied Categorical Structures, 2020, 28 : 1 - 57
  • [13] On periodic dynamical systems
    Lu, WL
    Chen, TP
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2004, 25 (04) : 455 - 462
  • [14] Punctures and dynamical systems
    Hassler, Falk
    Heckman, Jonathan J.
    LETTERS IN MATHEMATICAL PHYSICS, 2019, 109 (03) : 449 - 495
  • [15] Resilience of dynamical systems
    Krakovska, Hana
    Kuehn, Christian
    Longo, Iacopo P.
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2024, 35 (01) : 155 - 200
  • [16] ROBUST NON-COMPUTABILITY OF DYNAMICAL SYSTEMS AND COMPUTABILITY OF ROBUST DYNAMICAL SYSTEMS
    Graca, Daniel S.
    Zhong, Ning
    LOGICAL METHODS IN COMPUTER SCIENCE, 2024, 20 (02)
  • [17] On Optimal Coding of Non-Linear Dynamical Systems
    Kawan, Christoph
    Yuksel, Serdar
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (10) : 6816 - 6829
  • [18] Empirical risk minimization for dynamical systems and stationary processes
    McGoff, Kevin
    Nobel, Andrew B.
    INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2021, 10 (03) : 1073 - 1104
  • [19] Concepts of synchronization in dynamical systems
    Yang, XS
    PHYSICS LETTERS A, 1999, 260 (05) : 340 - 344
  • [20] Uncertainty propagation in dynamical systems
    Mezic, Igor
    Runolfsson, Thordur
    AUTOMATICA, 2008, 44 (12) : 3003 - 3013