HARMONIC LIMITS OF DYNAMICAL SYSTEMS

被引:0
|
作者
Wichtrey, Tobias [1 ]
机构
[1] Univ Augsburg, Inst Math, D-86135 Augsburg, Germany
关键词
Dynamical systems; ergodic theory; rotational behaviour; linear differential equations;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we analyze the rotational behaviour of dynamical systems, particulary of solutions of ODEs. With rotational behaviour we mean the existence of rotational factor maps, i.e., semi-conjugations to rotations in the complex plane. In order to analyze this kind of rotational behaviour, we introduce harmonic limits lim(T ->infinity) 1/T integral(T)(0) e(it omega) f(Phi(t)x)dt. We discuss the connection between harmonic limits and rotational factor maps, and some properties of the limits, e.g., existence under the presence of an invariant measure by the Wiener-Wintner Ergodic Theorem. Finally, we look at linear differential equations (autonomous and periodic), and show the connection between the frequencies of the rotational factor maps and the imaginary parts of the eigenvalues of the system matrix (or of the Floquet exponents in the periodic case).
引用
收藏
页码:1432 / 1439
页数:8
相关论文
共 50 条
  • [1] A harmonic-based method for computing the stability of periodic solutions of dynamical systems
    Lazarus, Arnaud
    Thomas, Olivier
    COMPTES RENDUS MECANIQUE, 2010, 338 (09): : 510 - 517
  • [2] Visual Analysis of Nonlinear Dynamical Systems: Chaos, Fractals, Self-Similarity and the Limits of Prediction
    Boeing, Geoff
    SYSTEMS, 2016, 4 (04):
  • [3] Statistical inference for dynamical systems: A review
    McGoff, Kevin
    Mukherjee, Sayan
    Pillai, Natesh
    STATISTICS SURVEYS, 2015, 9 : 209 - 252
  • [4] Probability, ergodicity, irreversibility and dynamical systems
    Lucia, Umberto
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2008, 464 (2093): : 1089 - 1104
  • [5] Modern Koopman Theory for Dynamical Systems
    Brunton, Steven L.
    Budisic, Marko
    Kaiser, Eurika
    Kutz, J. Nathan
    SIAM REVIEW, 2022, 64 (02) : 229 - 340
  • [6] Artificial Biochemical Networks: Evolving Dynamical Systems to Control Dynamical Systems
    Lones, Michael A.
    Fuente, Luis A.
    Turner, Alexander P.
    Caves, Leo S. D.
    Stepney, Susan
    Smith, Stephen L.
    Tyrrell, Andy M.
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2014, 18 (02) : 145 - 166
  • [7] Mapping and dynamical systems
    Sidlichovsky, M
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1996, 65 (1-2): : 69 - 84
  • [8] Dynamical Systems and Sheaves
    Schultz, Patrick
    Spivak, David I.
    Vasilakopoulou, Christina
    APPLIED CATEGORICAL STRUCTURES, 2020, 28 (01) : 1 - 57
  • [9] ON PERIODIC DYNAMICAL SYSTEMS
    LU WENLIAN CHEN TIANPING Laboratory of Nonlinear Mathematics Science
    Chinese Annals of Mathematics, 2004, (04) : 455 - 462
  • [10] Punctures and dynamical systems
    Falk Hassler
    Jonathan J. Heckman
    Letters in Mathematical Physics, 2019, 109 : 449 - 495