CAST: A multi-scale convolutional neural network based automated hippocampal subfield segmentation toolbox

被引:13
|
作者
Yang, Zhengshi [1 ]
Zhuang, Xiaowei [1 ]
Mishra, Virendra [1 ]
Sreenivasan, Karthik [1 ]
Cordes, Dietmar [1 ,2 ]
机构
[1] Cleveland Clin, Lou Ruvo Ctr Brain Hlth, 888 W Bonneville Ave, Las Vegas, NV 89106 USA
[2] Univ Colorado, Dept Psychol & Neurosci, Boulder, CO 80309 USA
关键词
Hippocampal subfields; Automated segmentation; Convolutional neural network; Residual learning; PARAHIPPOCAMPAL SUBREGIONS; PATTERN SEPARATION; DENTATE GYRUS; MRI; VIVO; PROTOCOL; CA3;
D O I
10.1016/j.neuroimage.2020.116947
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
In this study, we developed a multi-scale Convolutional neural network based Automated hippocampal subfield Segmentation Toolbox (CAST) for automated segmentation of hippocampal subfields. Although training CAST required approximately three days on a single workstation with a high-quality GPU card, CAST can segment a new subject in less than 1 min even with GPU acceleration disabled, thus this method is more time efficient than current automated methods and manual segmentation. This toolbox is highly flexible with either a single modality or multiple modalities and can be easily set up to be trained with a researcher's unique data. A 3D multi-scale deep convolutional neural network is the key algorithm used in the toolbox. The main merit of multi-scale im-ages is the capability to capture more global structural information from down-sampled images without dramatically increasing memory and computational burden. The original images capture more local information to refine the boundary between subfields. Residual learning is applied to alleviate the vanishing gradient problem and improve the performance with a deeper network. We applied CAST with the same settings on two datasets, one 7T dataset (the UMC dataset) with only the T2 image and one 3T dataset (the MNI dataset) with both T1 and T2 images available. The segmentation accuracy of both CAST and the state-of-the-art automated method ASHS, in terms of the dice similarity coefficient (DSC), were comparable. CAST significantly improved the reliability of segmenting small subfields, such as CA2, CA3, and the entorhinal cortex (ERC), in terms of the intraclass cor-relation coefficient (ICC). Both ASHS and manual segmentation process some subfields (e.g. CA2 and ERC) with high DSC values but low ICC values, consequently increasing the difficulty of judging segmentation quality. CAST produces very consistent DSC and ICC values, with a maximal discrepancy of 0.01 (DSC-ICC) across all subfields. The pre-trained model, source code, and settings for the CAST toolbox are publicly available.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Skin Lesion Segmentation Based on Multi-Scale Attention Convolutional Neural Network
    Jiang, Yun
    Cao, Simin
    Tao, Shengxin
    Zhang, Hai
    IEEE ACCESS, 2020, 8 : 122811 - 122825
  • [2] Retinal Vessels Segmentation Based on Dilated Multi-Scale Convolutional Neural Network
    Jiang, Yun
    Tan, Ning
    Peng, Tingting
    Zhang, Hai
    IEEE ACCESS, 2019, 7 : 76342 - 76352
  • [3] Magnetic Resonance Image Segmentation Based on Multi-Scale Convolutional Neural Network
    Hao, Jinglong
    Li, Xiaoxi
    Hou, Yanxia
    IEEE ACCESS, 2020, 8 (08): : 65758 - 65768
  • [4] Instance segmentation convolutional neural network based on multi-scale attention mechanism
    Wang Gaihua
    Lin Jinheng
    Cheng Lei
    Dai Yingying
    Zhang Tianlun
    PLOS ONE, 2022, 17 (01):
  • [5] Multi-Scale Retinal Vessel Segmentation Based on Fully Convolutional Neural Network
    Zheng Tingyue
    Tang Chen
    Lei Zhenkun
    ACTA OPTICA SINICA, 2019, 39 (02)
  • [6] An aerial image segmentation approach based on enhanced multi-scale convolutional neural network
    Li, Xiang
    Jiang, Yuchen
    Peng, Hu
    Yin, Shen
    2019 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL CYBER PHYSICAL SYSTEMS (ICPS 2019), 2019, : 47 - 52
  • [7] Multi-scale Convolutional Neural Network for SAR Image Semantic Segmentation
    Duan, Yiping
    Tao, Xiaoming
    Han, Chaoyi
    Qin, Xiaowei
    Lu, Jianhua
    2018 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2018,
  • [8] Multi-Scale and Multi-Branch Convolutional Neural Network for Retinal Image Segmentation
    Jiang, Yun
    Liu, Wenhuan
    Wu, Chao
    Yao, Huixiao
    SYMMETRY-BASEL, 2021, 13 (03): : 1 - 25
  • [9] Segmentation Quality Evaluation based on Multi-Scale Convolutional Neural Networks
    Shi, Wen
    Meng, Fanman
    Wu, Qingbo
    2017 IEEE VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP), 2017,
  • [10] MSGCNN: MULTI-SCALE GRAPH CONVOLUTIONAL NEURAL NETWORK FOR POINT CLOUD SEGMENTATION
    Xu, Mingxing
    Dai, Wenrui
    Shen, Yangmei
    Xiong, Hongkai
    2019 IEEE FIFTH INTERNATIONAL CONFERENCE ON MULTIMEDIA BIG DATA (BIGMM 2019), 2019, : 118 - 127