Statistical mechanics of Steiner trees

被引:34
作者
Bayati, M. [1 ]
Borgs, C. [1 ]
Braunstein, A. [2 ]
Chayes, J. [1 ]
Ramezanpour, A. [3 ]
Zecchina, R. [2 ]
机构
[1] Microsoft Res, Redmond, WA 98052 USA
[2] Politecn Torino, I-10129 Turin, Italy
[3] ICTP, I-34100 Trieste, Italy
关键词
D O I
10.1103/PhysRevLett.101.037208
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The minimum weight Steiner tree (MST) is an important combinatorial optimization problem over networks that has applications in a wide range of fields. Here we discuss a general technique to translate the imposed global connectivity constrain into many local ones that can be analyzed with cavity equation techniques. This approach leads to a new optimization algorithm for MST and allows us to analyze the statistical mechanics properties of MST on random graphs of various types.
引用
收藏
页数:4
相关论文
共 18 条
[1]  
ADDARIOBERRY L, 2006, P 4 C MATH COMP SCI
[2]   The ζ(2) limit in the random assignment problem [J].
Aldous, DJ .
RANDOM STRUCTURES & ALGORITHMS, 2001, 18 (04) :381-418
[3]  
ANGEL O, BOUNDED DEPTH UNPUB
[4]   On the value of a random minimum weight steiner tree [J].
Bollobás, B ;
Gamarnik, D ;
Riordan, O ;
Sudakov, B .
COMBINATORICA, 2004, 24 (02) :187-207
[5]   Learning by message passing in networks of discrete synapses [J].
Braunstein, A ;
Zecchina, R .
PHYSICAL REVIEW LETTERS, 2006, 96 (03)
[6]   Polynomial iterative algorithms for coloring and analyzing random graphs [J].
Braunstein, A ;
Mulet, R ;
Pagnani, A ;
Weigt, M ;
Zecchina, R .
PHYSICAL REVIEW E, 2003, 68 (03) :15
[7]   Survey propagation:: An algorithm for satisfiability [J].
Braunstein, A ;
Mézard, M ;
Zecchina, R .
RANDOM STRUCTURES & ALGORITHMS, 2005, 27 (02) :201-226
[8]  
DI C, 2004, P INT S INF THEOR IS
[9]   Structure of optimal transport networks subject to a global constraint [J].
Durand, Marc .
PHYSICAL REVIEW LETTERS, 2007, 98 (08)
[10]   Clustering by passing messages between data points [J].
Frey, Brendan J. ;
Dueck, Delbert .
SCIENCE, 2007, 315 (5814) :972-976