Analysis Regarding The Learning-To-Learn Process In The Implementation Of A Meta-Supervised Algorithm For Few-Shot Learning

被引:3
|
作者
Rivas-Posada, Eduardo [1 ]
Chacon-Murguia, Mario I. [1 ]
机构
[1] Inst Tecnol Chihuahua, Tecnol Nacl Mexico, Visual Percept Lab, Chihuahua, Chihuahua, Mexico
来源
2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN) | 2022年
关键词
D O I
10.1109/IJCNN55064.2022.9892057
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
引用
收藏
页数:8
相关论文
共 50 条
  • [21] META-LEARNING WITH ATTENTION FOR IMPROVED FEW-SHOT LEARNING
    Hou, Zejiang
    Walid, Anwar
    Kung, Sun-Yuan
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 2725 - 2729
  • [22] Meta-pruning: Learning to Prune on Few-Shot Learning
    Chu, Yan
    Liu, Keshi
    Jiang, Songhao
    Sun, Xianghui
    Wang, Baoxu
    Wang, Zhengkui
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT I, KSEM 2024, 2024, 14884 : 74 - 85
  • [23] Task Agnostic Meta-Learning for Few-Shot Learning
    Jamal, Muhammad Abdullah
    Qi, Guo-Jun
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 11711 - 11719
  • [24] Exploring Meta Learning: Parameterizing the Learning-to-learn Process for Image Classification
    So, Chaehan
    3RD INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE IN INFORMATION AND COMMUNICATION (IEEE ICAIIC 2021), 2021, : 199 - 202
  • [25] Batch Process Modeling with Few-Shot Learning
    Gu, Shaowu
    Chen, Junghui
    Xie, Lei
    PROCESSES, 2023, 11 (05)
  • [26] Meta Self-Supervised Learning for Distribution Shifted Few-Shot Scene Classification
    Gong, Tengfei
    Zheng, Xiangtao
    Lu, Xiaoqiang
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [27] An overview on Meta-learning approaches for Few-shot Weakly-supervised Segmentation
    Gama, Pedro Henrique Targino
    Oliveira, Hugo
    dos Santos, Jefersson A.
    Cesar Jr, Roberto M.
    COMPUTERS & GRAPHICS-UK, 2023, 113 : 77 - 88
  • [28] MaskSplit: Self-supervised Meta-learning for Few-shot Semantic Segmentation
    Amac, Mustafa Sercan
    Sencan, Ahmet
    Baran, Orhun Bugra
    Ikizler-Cinbis, Nazli
    Cinbis, Ramazan Gokberk
    2022 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2022), 2022, : 428 - 438
  • [29] Learn to aggregate global and local representations for few-shot learning
    Mounir Abdelaziz
    Zuping Zhang
    Multimedia Tools and Applications, 2023, 82 : 32991 - 33014
  • [30] Learning to Learn Task Transformations for Improved Few-Shot Classification
    Zheng, Guangtao
    Suo, Qiuling
    Huai, Mengdi
    Zhang, Aidong
    PROCEEDINGS OF THE 2023 SIAM INTERNATIONAL CONFERENCE ON DATA MINING, SDM, 2023, : 784 - 792