Can graphene with intrinsic defects electrocatalyze N2 to NH3 reduction?

被引:27
|
作者
Wang, Fei [1 ]
Xu, Xia [1 ]
Mao, Jian [1 ]
机构
[1] Sichuan Univ, Coll Mat Sci & Engn, 24 South Sect 1,Yihuan Rd, Chengdu 610065, Peoples R China
关键词
Electrocatalysis; N-2 reduction reaction; Graphene; Intrinsic defect; Density functional theory; METAL-FREE ELECTROCATALYSTS; NITROGEN REDUCTION; DOPED GRAPHENE; CARBON; EFFICIENT; BORON; AMMONIA; ATOM; FIXATION;
D O I
10.1016/j.diamond.2020.108037
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Defect engineering strategy is widely adopted to design graphene/ graphene-composited N-2 reduction reaction (NRR) electrocatalysts. Currently, all attentions are focused on the introduction of extrinsic defects for graphene, but the intrinsic defects of graphene are ignored even though they would be commonly introduced in the procedures of preparation and processing. Herein, the effect of intrinsic defects of graphene (dislocation, vacancy and edge defects) on NRR is studied by density functional theory (DFT) calculation firstly. Graphene with armchair and zigzag edges shows inert for NRR due to the unfavourable N-2 capture. For the graphene with vacancy and dislocation defects, the two configurations exhibit favourable N-2 capture (negative N-2 adsorption free energies), acceptable energy barriers at the potential-determining step and high NRR selectivity. This work would remind researchers that the effect of intrinsic defects of graphene cannot be ignored when analyzing the source of NRR performance, and provides a brand-new potential paradigm to design graphene/graphene-composited NRR electrocatalysts.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Electrocatalysis of N2 to NH3 by HKUST-1 with High NH3 Yield
    Cao, Yueming
    Li, Peipei
    Wu, Tengteng
    Liu, Meiling
    Zhang, Youyu
    CHEMISTRY-AN ASIAN JOURNAL, 2020, 15 (08) : 1272 - 1276
  • [22] MILD combustion of partially catalyzed NH3 and NH3/N2 in a novel burner
    Jiang, Tong
    Sun, Yanjun
    Dai, Lingfeng
    Zeng, Weihao
    Yang, Yingju
    Zou, Chun
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2024, 40 (1-4)
  • [23] Electrochemical Reduction of N2 to NH3 at Low Potential by a Molecular Aluminum Complex
    Sherbow, Tobias J.
    Thompson, Emily J.
    Arnold, Amela
    Sayler, Richard, I
    Britt, R. David
    Berben, Louise A.
    CHEMISTRY-A EUROPEAN JOURNAL, 2019, 25 (02) : 454 - 458
  • [24] An Fe2O3 nanoparticle-reduced graphene oxide composite for ambient electrocatalytic N2 reduction to NH3
    Li, Jian
    Zhu, Xiaojuan
    Wang, Ting
    Luo, Yonglan
    Sun, Xuping
    INORGANIC CHEMISTRY FRONTIERS, 2019, 6 (10): : 2682 - 2685
  • [25] Anchoring PdCu Amorphous Nanocluster on Graphene for Electrochemical Reduction of N2 to NH3 under Ambient Conditions in Aqueous Solution
    Shi, Miao-Miao
    Bao, Di
    Li, Si-Jia
    Wulan, Ba-Ri
    Yan, Jun-Min
    Jiang, Qing
    ADVANCED ENERGY MATERIALS, 2018, 8 (21)
  • [26] High-Pressure Chemistry of Graphene Oxide in the Presence of Ar, N2, and NH3
    Ceppatelli, Matteo
    Scelta, Demetrio
    Tuci, Giulia
    Giambastiani, Giuliano
    Hanfland, Michael
    Bini, Roberto
    JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (09): : 5174 - 5187
  • [27] Electrochemical Reduction of N2 to NH3 Using a Co-Atom Stabilized on Defective N-Doped Graphene: A Computational Study
    Saeidi, Nasibeh
    Esrafili, Mehdi D.
    Sardroodi, Jaber Jahanbin
    CHEMISTRYSELECT, 2019, 4 (42): : 12216 - 12226
  • [28] Electrochemical Reduction of N2 under Ambient Conditions for Artificial N2 Fixation and Renewable Energy Storage Using N2/NH3 Cycle
    Bao, Di
    Zhang, Qi
    Meng, Fan-Lu
    Zhong, Hai-Xia
    Shi, Miao-Miao
    Zhang, Yu
    Yan, Jun-Min
    Jiang, Qing
    Zhang, Xin-Bo
    ADVANCED MATERIALS, 2017, 29 (03)
  • [29] LITHIUM-MEDIATED ELECTROCHEMICAL REDUCTION OF HIGH-PRESSURE N2 TO NH3
    TSUNETO, A
    KUDO, A
    SAKATA, T
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1994, 367 (1-2): : 183 - 188
  • [30] Promoting effect of N2 calcination on FeCeOx for selective catalytic reduction of NOx with NH3
    Xie, Lijuan
    Du, Kenan
    Ren, Sihan
    Liu, Fudong
    Deng, Yun
    Ruan, Wenquan
    JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2023, 98 (10) : 2568 - 2576