Isolation of circulating tumor cells

被引:38
|
作者
Edd, Jon F. [1 ,2 ,3 ]
Mishra, Avanish [1 ,2 ,3 ,5 ]
Smith, Kyle C. [4 ]
Kapur, Ravi [1 ,2 ,4 ]
Maheswaran, Shyamala [3 ,5 ]
Haber, Daniel A. [3 ,5 ,6 ]
Toner, Mehmet [1 ,2 ,5 ,7 ]
机构
[1] Massachusetts Gen Hosp, BioMEMS Resource Ctr, Ctr Engn Med & Surg Serv, Boston, MA 02114 USA
[2] Harvard Med Sch, Boston, MA 02114 USA
[3] Massachusetts Gen Hosp, Canc Ctr, Boston, MA 02114 USA
[4] BendBio Inc, Sharon, MA 02067 USA
[5] Harvard Med Sch, Boston, MA 02115 USA
[6] Howard Hughes Med Inst, Bethesda, MD 20815 USA
[7] Shriners Hosp Children, Boston, MA 02114 USA
关键词
CANCER-PATIENTS; DIAGNOSTIC LEUKAPHERESIS; LIQUID BIOPSY; LABEL-FREE; BLOOD; SEPARATION; ENRICHMENT; CLUSTERS; PARTICLE; SYSTEM;
D O I
10.1016/j.isci.2022.104696
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Circulating tumor cells (CTCs) enter the vasculature from solid tumors and disseminate widely to initiate metastases. Mining the metastatic-enriched molecular signatures of CTCs before, during, and after treatment holds unique potential in personalized oncology. Their extreme rarity, however, requires isolation from large blood volumes at high yield and purity, yet they overlap leukocytes in size and other biophysical properties. Additionally, many CTCs lack EpCAM that underlies much of affinity-based capture, complicating their separation from blood. Here, we provide a comprehensive introduction of CTC isolation technology, by analyzing key separation modes and integrated isolation strategies. Attention is focused on recent progress in microfluidics, where an accelerating evolution is occurring in high-throughput sorting of cells along multiple dimensions.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] In vivo isolation of circulating tumor cells
    Heyden, A.
    Tomasi, T.
    Zeni, N.
    Herold, S.
    Nowaczyk, P.
    Schmitz, A.
    Krahn, T.
    Zabel, M.
    Murawa, D.
    Luecke, K.
    EUROPEAN JOURNAL OF CANCER, 2011, 47 : S19 - S19
  • [2] Isolation of Circulating Tumor Cells by Dielectrophoresis
    Gascoyne, Peter R. C.
    Shim, Sangjo
    CANCERS, 2014, 6 (01) : 545 - 579
  • [3] Isolation of circulating tumor cells based on magnetophoresis
    Xu, Ke
    Jiao, Xue-Lei
    Chen, Chang-You
    Wang, Ping-Ping
    Chen, Chuan-Fang
    CHINESE JOURNAL OF ANALYTICAL CHEMISTRY, 2022, 50 (03)
  • [4] Biophysical isolation and identification of circulating tumor cells
    Che, James
    Yu, Victor
    Garon, Edward B.
    Goldman, Jonathan W.
    Di Carlo, Dino
    LAB ON A CHIP, 2017, 17 (08) : 1452 - 1461
  • [5] Circulating tumor cells: approaches to isolation and characterization
    Yu, Min
    Stott, Shannon
    Toner, Mehmet
    Maheswaran, Shyamala
    Haber, Daniel A.
    JOURNAL OF CELL BIOLOGY, 2011, 192 (03): : 373 - 382
  • [6] Nanotopographic Biomaterials for Isolation of Circulating Tumor Cells
    Qian, Weiyi
    Zhang, Yan
    Gordon, Andrew
    Chen, Weiqiang
    Journal of Nanotechnology in Engineering and Medicine, 2015, 5 (04)
  • [7] Nanostructured substrates for isolation of circulating tumor cells
    Wang, Lixue
    Asghar, Waseem
    Demirci, Utkan
    Wan, Yuan
    NANO TODAY, 2013, 8 (04) : 374 - 387
  • [8] Isolation of circulating tumor cells in vivo by the CellCollector™ technology
    Herold, S.
    Hoda, R.
    Gasiorowski, L.
    Nowaczyk, P.
    Haubold, K.
    Dyszkiewicz, W.
    Murawa, D.
    Theil, G.
    Dlugaszewska, B.
    Luecke, K.
    ONCOLOGY RESEARCH AND TREATMENT, 2014, 37 : 128 - 128
  • [9] Technical challenges in the isolation and analysis of circulating tumor cells
    van der Toom, Emma E.
    Verdone, James E.
    Gorin, Michael A.
    Pienta, Kenneth J.
    ONCOTARGET, 2016, 7 (38) : 62754 - 62766
  • [10] The role of polymers in detection and isolation of circulating tumor cells
    Myung, Ja Hye
    Gajjar, Khyati A.
    Han, Ye Eon
    Hong, Seungpyo
    POLYMER CHEMISTRY, 2012, 3 (09) : 2336 - 2341