Long-distance coherent coupling in a quantum dot array

被引:0
|
作者
Braakman, F. R. [1 ]
Barthelemy, P. [1 ]
Reichl, C. [2 ]
Wegscheider, W. [2 ]
Vandersypen, L. M. K. [1 ]
机构
[1] Delft Univ Technol, Kavli Inst Nanosci, NL-2600 GA Delft, Netherlands
[2] ETH, Solid State Phys Lab, CH-8093 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
SPINS; QUBITS; CAVITY; COMPUTATION; GATE;
D O I
10.1038/NNANO.2013.67
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Controlling long-distance quantum correlations is central to quantum computation and simulation. In quantum dot arrays, experiments so far rely on nearest-neighbour couplings only, and inducing long-distance correlations requires sequential local operations. Here, we show that two distant sites can be tunnel-coupled directly. The coupling is mediated by virtual occupation of an intermediate site, with a strength that is controlled via the energy detuning of this site. It permits a single charge to oscillate coherently between the outer sites of a triple dot array without passing through the middle, as demonstrated through the observation of Landau-Zener-Stuckelberg interference. The long-distance coupling significantly improves the prospects of fault-tolerant quantum computation using quantum dot arrays, and opens up new avenues for performing quantum simulations in nanoscale devices.
引用
收藏
页码:432 / 437
页数:6
相关论文
共 50 条
  • [1] Long-distance coherent coupling in a quantum dot array
    Braakman F.R.
    Barthelemy P.
    Reichl C.
    Wegscheider W.
    Vandersypen L.M.K.
    Nature Nanotechnology, 2013, 8 (6) : 432 - 437
  • [2] Long-distance recognition of infrared quantum dot materials
    Geng R.
    Zhao K.
    Chen Q.
    Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2021, 50 (07):
  • [3] Hidden hyperspace geometry and long-distance quantum coupling
    Jeon, Junmo
    Lee, Sungbin
    PHYSICAL REVIEW B, 2025, 111 (02)
  • [4] Telecom-band quantum dot technologies for long-distance quantum networks
    Yu, Ying
    Liu, Shunfa
    Lee, Chang-Min
    Michler, Peter
    Reitzenstein, Stephan
    Srinivasan, Kartik
    Waks, Edo
    Liu, Jin
    NATURE NANOTECHNOLOGY, 2024, 19 (02) : 1389 - 1400
  • [5] Engineering of InAsP/InP quantum dot emission for long-distance quantum communications
    Hostein, R.
    Larque, M.
    Elivra, D.
    Fain, B.
    Michon, A.
    Talneau, A.
    Braive, R.
    Gogneau, N.
    Sagnes, I.
    Beaudoin, G.
    Robert-Philip, I.
    Beveratos, A.
    QUANTUM SENSING AND NANOPHOTONIC DEVICES VII, 2010, 7608
  • [6] Telecom-band quantum dot technologies for long-distance quantum networks
    Ying Yu
    Shunfa Liu
    Chang-Min Lee
    Peter Michler
    Stephan Reitzenstein
    Kartik Srinivasan
    Edo Waks
    Jin Liu
    Nature Nanotechnology, 2023, 18 : 1389 - 1400
  • [7] Long-distance quantum key distribution secure against coherent attacks
    Frohlich, Bernd
    Lucamarini, Marco
    Dynes, James F.
    Comandar, Lucian C.
    Tam, Winci W. -S.
    Plews, Alan
    Sharpe, Andrew W.
    Yuan, Zhiliang
    Shields, Andrew J.
    OPTICA, 2017, 4 (01): : 163 - 167
  • [8] Long-distance quantum communication
    Duan, L
    Lukin, M
    Cirac, JI
    Zoller, P
    ACTA PHYSICA POLONICA A, 2002, 101 (03) : 325 - 336
  • [9] LONG-DISTANCE QUANTUM CRYPTOGRAPHY
    Lamonica, Martin
    IEEE SPECTRUM, 2013, 50 (08) : 12 - 13
  • [10] Long-Distance Superexchange between Semiconductor Quantum-Dot Electron Spins
    Qiao, Haifeng
    Kandel, Yadav P.
    Fallahi, Saeed
    Gardner, Geoffrey C.
    Manfra, Michael J.
    Hu, Xuedong
    Nichol, John M.
    PHYSICAL REVIEW LETTERS, 2021, 126 (01)