Metamorphic InAlAs/InGaAs/InAlAs/GaAs HEMT heterostructures containing strained superlattices and inverse steps in the metamorphic buffer

被引:23
作者
Galiev, G. B. [1 ]
Vasil'evskii, I. S. [2 ]
Pushkarev, S. S. [1 ,2 ]
Klimov, E. A. [1 ]
Imamov, R. M. [3 ]
Buffat, P. A. [4 ]
Dwir, B. [5 ]
Suvorova, E. I. [3 ]
机构
[1] Russian Acad Sci, Inst Ultrahigh Frequency Semicond Elect, Moscow 117901, Russia
[2] Natl Res Nucl Univ MEPhI, Moscow, Russia
[3] Russian Acad Sci, AV Shubnikov Crystallog Inst, Moscow 117901, Russia
[4] Ecole Polytech Fed Lausanne, Ctr Interdisciplinaire Microscopie Elect, CH-1015 Lausanne, Switzerland
[5] Ecole Polytech Fed Lausanne, Lab Phys Nanostruct, CH-1015 Lausanne, Switzerland
基金
俄罗斯基础研究基金会;
关键词
Dislocations; Molecular beam epitaxy; Quantum wells; Strained superlattices; Metamorphic buffer; Semiconducting indium gallium arsenide; Semiconducting indium aluminum arsenide; High electron mobility transistors; MOLECULAR-BEAM EPITAXY; GAAS; DISLOCATIONS; GROWTH; LAYER;
D O I
10.1016/j.jcrysgro.2012.12.017
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
Metamorphic InxAl1-xAs buffer design features influence on electrophysical and structural properties of the heterostructures was investigated. Two types of MHEMT heterostructures In0.70Al0.30As/In0.76Ga0.24As with novel design contained inverse steps or strained superlattices were grown by MBE on GaAs substrates. Electrophysical properties of the heterostructures were characterized by Hall measurements, while the structural features were described with the help of different transmission electron microscopy techniques. The metamorphic HEMT with strained superlattices inserted in the metamorphic buffer had the smoother surface and more defect-free crystal structure, as well as a higher Hall mobility, than metamorphic HEMT with inverse steps within the metamorphic buffer. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:55 / 60
页数:6
相关论文
共 21 条
[11]   30-nm InAs PHEMTs With fT=644 GHz and fmax=681 GHz [J].
Kim, Dae-Hyun ;
del Alamo, Jesus A. .
IEEE ELECTRON DEVICE LETTERS, 2010, 31 (08) :806-808
[12]  
Leuther A, 2005, CONF P INDIUM PHOSPH, P129
[13]   Microstructural defects in metalorganic vapor phase epitaxy of relaxed, graded InGaP: Branch defect origins and engineering [J].
McGill, LM ;
Fitzgerald, EA ;
Kim, AY ;
Huang, JW ;
Yi, SS ;
Grillot, PN ;
Stockman, SA .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2004, 22 (04) :1899-1911
[14]   Comparison of compressive and tensile relaxed composition-graded GaAsP and (Al)InGaP substrates [J].
Mori, M. J. ;
Boles, S. T. ;
Fitzgerald, E. A. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2010, 28 (02) :182-188
[15]   Resolving the Burgers vector for individual GaN dislocations by electron channeling contrast imaging [J].
Picard, Y. N. ;
Twigg, M. E. ;
Caldwell, J. D. ;
Eddy, C. R., Jr. ;
Mastro, M. A. ;
Holm, R. T. .
SCRIPTA MATERIALIA, 2009, 61 (08) :773-776
[16]   Relaxed, high-quality InP on GaAs by using InGaAs and InGaP graded buffers to avoid phase separation [J].
Quitoriano, Nathaniel J. ;
Fitzgerald, Eugene A. .
JOURNAL OF APPLIED PHYSICS, 2007, 102 (03)
[17]   Effects of doping and grading slope on surface and structure of metamorphic InGaAs buffers on GaAs substrates [J].
Song, Yuxin ;
Wang, Shumin ;
Tangring, Ivar ;
Lai, Zonghe ;
Sadeghi, Mahdad .
JOURNAL OF APPLIED PHYSICS, 2009, 106 (12)
[18]   DISLOCATIONS AND STRAIN RELIEF IN COMPOSITIONALLY GRADED LAYERS [J].
TERSOFF, J .
APPLIED PHYSICS LETTERS, 1993, 62 (07) :693-695
[19]   Diffraction Contrast of Threading Dislocations in GaN and 4H-SiC Epitaxial Layers Using Electron Channeling Contrast Imaging [J].
Twigg, M. E. ;
Picard, Y. N. ;
Caldwell, J. D. ;
Eddy, C. R., Jr. ;
Mastro, M. A. ;
Holm, R. T. ;
Neudeck, P. G. ;
Trunek, A. J. ;
Powell, J. A. .
JOURNAL OF ELECTRONIC MATERIALS, 2010, 39 (06) :743-746
[20]   Interrelation of the Construction of the Metamorphic InAlAs/InGaAs Nanoheterostructures with the InAs Content in the Active Layer of 76-100% with Their Surface Morphology and Electrical Properties [J].
Vasil'evskii, I. S. ;
Galiev, G. B. ;
Klimov, E. A. ;
Kvanin, A. L. ;
Pushkarev, S. S. ;
Pushkin, M. A. .
SEMICONDUCTORS, 2011, 45 (09) :1158-1163