Airborne lidar detection and characterization of internal waves in a shallow fjord

被引:43
作者
Churnside, James H. [1 ]
Marchbanks, Richard D. [2 ,3 ]
Lee, Jennifer H. [1 ]
Shaw, Joseph A. [4 ,5 ]
Weidemann, Alan [6 ]
Donaghay, Percy L. [7 ]
机构
[1] NOAA, Earth Syst Res Lab, Boulder, CO 80305 USA
[2] Univ Colorado, Boulder, CO 80305 USA
[3] NOAA, Earth Syst Res Lab, Cooperat Inst Res Environm Sci, Boulder, CO 80305 USA
[4] Montana State Univ, Opt Technol Ctr, Bozeman, MT 59717 USA
[5] Elect & Comp Engn Dept, Bozeman, MT 59717 USA
[6] USN, Res Lab, Stennis Space Ctr, Stennis Space Ctr, MS 39529 USA
[7] Univ Rhode Isl, Grad Sch Oceanog, Narragansett, RI 02874 USA
关键词
ocean optics; lidar; internal waves; plankton; thin layers; BACKSCATTERING TARGET DETECTION; SYNTHETIC-APERTURE RADAR; SCATTERING LAYERS; TURBID MEDIUM; THIN-LAYERS; LIGHT; POLARIZATION; OCEAN; DEPOLARIZATION; PHYTOPLANKTON;
D O I
10.1117/1.JRS.6.063611
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A dual-polarization lidar and photography are used to sense internal waves in West Sound, Orcas Island, Washington, from a small aircraft. The airborne lidar detected a thin plankton layer at the bottom of the upper layer of the water, and this signal provides the depth of the upper layer, amplitude of the internal waves, and the propagation speed. The lidar is most effective when the polarization filter on the receiver is orthogonal to the transmitted light, but this does not depend significantly on whether the transmitted light is linearly or circularly polarized. The depolarization is greater with circular polarization, and our results are consistent with a single parameter Mueller scattering matrix. Photographs of the surface manifestation of the internal waves clearly show the propagation direction and width of the phase fronts of the internal waves, even though the contrast is low (2%). Combined with the lidar profile, the total energy of the internal wave packet was estimated to be 9 MJ. (C) 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JRS.6.063611]
引用
收藏
页数:15
相关论文
共 53 条
[1]   Redistribution of energy available for ocean mixing by long-range propagation of internal waves [J].
Alford, MH .
NATURE, 2003, 423 (6936) :159-162
[2]   Occurrence and mechanisms of formation of a dramatic thin layer of marine snow in a shallow Pacific fjord [J].
Alldredge, AL ;
Cowles, TJ ;
MacIntyre, S ;
Rines, JEB ;
Donaghay, PL ;
Greenlaw, CF ;
Holliday, DV ;
Dekshenieks, MM ;
Sullivan, JM ;
Zaneveld, JRV .
MARINE ECOLOGY PROGRESS SERIES, 2002, 233 :1-12
[3]   NON-LINEAR FEATURES OF INTERNAL WAVES OFF BAJA CALIFORNIA AS OBSERVED FROM THE SEASAT IMAGING RADAR [J].
APEL, JR ;
GONZALEZ, FI .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1983, 88 (NC7) :4459-4466
[4]   Application of circularly polarized laser radiation for sensing of crystal clouds [J].
Balin, Yurii ;
Kaul, Bruno ;
Kokhanenko, Grigorii ;
Winker, David .
OPTICS EXPRESS, 2009, 17 (08) :6849-6859
[5]   TOPOGRAPHICALLY GENERATED INTERNAL WAVES IN OPEN OCEAN [J].
BELL, TH .
JOURNAL OF GEOPHYSICAL RESEARCH, 1975, 80 (03) :320-327
[6]   Passive scalars in stratified turbulence [J].
Brethouwer, G. ;
Lindborg, E. .
GEOPHYSICAL RESEARCH LETTERS, 2008, 35 (06)
[7]   Comparison of the relationships between lidar integrated backscattered light and accumulated depolarization ratios for linear and circular polarization for water droplets, fog oil, and dust [J].
Cao, Xiaoying ;
Roy, Gilles ;
Roy, Nathalie ;
Bernier, Robert .
APPLIED OPTICS, 2009, 48 (21) :4130-4141
[8]  
Churnside J. H., 1994, OCEANS PHYS CHEM DYN, P146
[9]   Polarization effects on oceanographic lidar [J].
Churnside, James H. .
OPTICS EXPRESS, 2008, 16 (02) :1196-1207
[10]   Power spectrum and fractal dimension of laser backscattering from the ocean [J].
Churnside, James H. ;
Wilson, James J. .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2006, 23 (11) :2829-2833