High-throughput sequencing in mutation detection: A new generation of genotoxicity tests?

被引:31
|
作者
Maslov, Alexander Y. [1 ]
Quispe-Tintaya, Wilber [1 ]
Gorbacheval, Tatyana [1 ]
White, Ryan R. [1 ]
Vijg, Jan [1 ]
机构
[1] Albert Einstein Coll Med, Dept Genet, Bronx, NY 10461 USA
关键词
Genetic toxicology; Next generation sequencing; Mutagenicity; Mutation; Genome rearrangement; IN-VIVO MUTATIONS; MULTIPLE DISPLACEMENT AMPLIFICATION; TRANSGENIC MOUSE MODEL; SINGLE CELLS; HUMAN GENOME; STRUCTURAL VARIATIONS; RARE MUTATIONS; PAIRED-END; DNA; CANCER;
D O I
10.1016/j.mrfmmm.2015.03.014
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The advent of next generation sequencing (NGS) technology has provided the means to directly analyze the genetic material in primary cells or tissues of any species in a high throughput manner for mutagenic effects of potential genotoxic agents. In principle, direct, genome-wide sequencing of human primary cells and/or tissue biopsies would open up opportunities to identify individuals possibly exposed to mutagenic agents, thereby replacing current risk assessment procedures based on surrogate markers and extrapolations from animal studies. NGS-based tests can also precisely characterize the mutation spectra induced by genotoxic agents, improving our knowledge of their mechanism of action. Thus far, NGS has not been widely employed in genetic toxicology due to the difficulties in measuring low-abundant somatic mutations. Here, we review different strategies to employ NGS for the detection of somatic mutations in a cost-effective manner and discuss the potential applicability of these methods in testing the mutagenicity of genotoxic agents. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:136 / 143
页数:8
相关论文
共 50 条
  • [1] High-throughput detection of clinically targetable alterations using next-generation sequencing
    Vendrell, Julie A.
    Grand, David
    Rouquette, Isabelle
    Costes, Valarie
    Icher, Samira
    Selves, Janick
    Larrieux, Marion
    Barbe, Aurore
    Brousset, Pierre
    Solassol, Jerome
    ONCOTARGET, 2017, 8 (25) : 40345 - 40358
  • [2] High-throughput sequencing of microdissected chromosomal regions
    Weise, Anja
    Timmermann, Bernd
    Grabherr, Manfred
    Werber, Martin
    Heyn, Patricia
    Kosyakova, Nadezda
    Liehr, Thomas
    Neitzel, Heidemarie
    Konrat, Kateryna
    Bommer, Christiane
    Dietrich, Carola
    Rajab, Anna
    Reinhardt, Richard
    Mundlos, Stefan
    Lindner, Tom H.
    Hoffmann, Katrin
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2010, 18 (04) : 457 - 462
  • [3] Detection of Pathogens Via High-Throughput Sequencing
    Khan, Akbar S.
    EMERGING AND ENDEMIC PATHOGENS: ADVANCES IN SURVEILLANCE, DETECTION AND IDENTIFICATION, 2010, : 119 - 123
  • [4] High-Throughput Next-Generation Sequencing of Polioviruses
    Montmayeur, Anna M.
    Ng, Terry Fei Fan
    Schmidt, Alexander
    Zhao, Kun
    Magana, Laura
    Iber, Jane
    Castro, Christina J.
    Chen, Qi
    Henderson, Elizabeth
    Ramos, Edward
    Shaw, Jing
    Tatusov, Roman L.
    Dybdahl-Sissoko, Naomi
    Endegue-Zanga, Marie Claire
    Adeniji, Johnson A.
    Oberste, M. Steven
    Burns, Cara C.
    JOURNAL OF CLINICAL MICROBIOLOGY, 2017, 55 (02) : 606 - 615
  • [5] High-Throughput Microdissection for Next-Generation Sequencing
    Rosenberg, Avi Z.
    Armani, Michael D.
    Fetsch, Patricia A.
    Xi, Liqiang
    Tina Thu Pham
    Raffeld, Mark
    Chen, Yun
    O'Flaherty, Neil
    Stussman, Rebecca
    Blackler, Adele R.
    Du, Qiang
    Hanson, Jeffrey C.
    Roth, Mark J.
    Filie, Armando C.
    Roh, Michael H.
    Emmert-Buck, Michael R.
    Hipp, Jason D.
    Tangrea, Michael A.
    PLOS ONE, 2016, 11 (03):
  • [6] Role of high-throughput sequencing in oncology
    Rodrigues, Manuel Jorge
    Gomez-Roca, Carlos
    BULLETIN DU CANCER, 2013, 100 (03) : 295 - 301
  • [7] AmpliVar: Mutation Detection in High-Throughput Sequence from Amplicon-Based Libraries
    Hsu, Arthur L.
    Kondrashova, Olga
    Lunke, Sebastian
    Love, Clare J.
    Meldrum, Cliff
    Marquis-Nicholson, Renate
    Corboy, Greg
    Kym Pham
    Wakefield, Matthew
    Waring, Paul M.
    Taylor, Graham R.
    HUMAN MUTATION, 2015, 36 (04) : 411 - 418
  • [8] High-throughput sequencing and vaccine design
    Luciani, F.
    REVUE SCIENTIFIQUE ET TECHNIQUE-OFFICE INTERNATIONAL DES EPIZOOTIES, 2016, 35 (01): : 53 - 65
  • [9] Direct mutation analysis by high-throughput sequencing: From germline to low-abundant, somatic variants
    Gundry, Michael
    Vijg, Jan
    MUTATION RESEARCH-FUNDAMENTAL AND MOLECULAR MECHANISMS OF MUTAGENESIS, 2012, 729 (1-2) : 1 - 15
  • [10] Nonoverlapping Clone Pooling for High-Throughput Sequencing
    Kuroshu, Reginaldo M.
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2013, 10 (05) : 1091 - 1097