Regularity criteria for the 3D MHD equations via one directional derivative of the pressure

被引:16
|
作者
Zhang, Zujin [1 ]
Li, Peng [2 ]
Yu, Gaohang [1 ]
机构
[1] Gannan Normal Univ, Sch Math & Comp Sci, Ganzhou 341000, Jiangxi, Peoples R China
[2] Sun Yat Sen Univ, Sch Math & Computat Sci, Guangzhou 510275, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Magneto-hydrodynamic equations; Regularity criterion; Global regularity; a priori estimates; NAVIER-STOKES EQUATIONS; WEAK SOLUTIONS; ONE-COMPONENT; TERMS;
D O I
10.1016/j.jmaa.2012.11.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the Cauchy problem for the 3D viscous MHD equations, and provide some regularity criteria involving only one directional derivative of the pressure, say partial derivative(3)p. In particular, if partial derivative(3)p is an element of L-alpha(0, T; L-beta(R-3)) with 2/alpha + 3/beta = 2, 3/2 <= beta <= 3, then the solution remains smooth on [0, T]. Crown Copyright (C) 2012 Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:66 / 71
页数:6
相关论文
共 50 条
  • [31] Regularity criteria for the 3D MHD equations involving one current density and the gradient of one velocity component
    Zhang, Zujin
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 115 : 41 - 49
  • [32] CONDITIONAL REGULARITY FOR THE 3D INCOMPRESSIBLE MHD EQUATIONS VIA PARTIAL COMPONENTS
    Wang, Huifang
    Li, Yafei
    Guo, Zhengguang
    Skalak, Zdenek
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2019, 17 (04) : 1025 - 1043
  • [33] On Regularity Criteria for the 3D Incompressible MHD Equations Involving One Velocity Component
    Xuanji Jia
    Yong Zhou
    Journal of Mathematical Fluid Mechanics, 2016, 18 : 187 - 206
  • [34] On Regularity Criteria for the 3D Incompressible MHD Equations Involving One Velocity Component
    Jia, Xuanji
    Zhou, Yong
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2016, 18 (01) : 187 - 206
  • [35] A Regularity Criterion for the 3D Generalized MHD Equations
    Fan, Jishan
    Alsaedi, Ahmed
    Hayat, Tasawar
    Nakamura, Gen
    Zhou, Yong
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2014, 17 (3-4) : 333 - 340
  • [36] On regularity criteria of the 2D generalized MHD equations
    Ye, Zhuan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 463 (02) : 989 - 1005
  • [37] Remarks on the global regularity criteria for the 3D MHD equations via two components
    Zhang, Zujin
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (03): : 977 - 987
  • [38] A regularity criterion for the three-dimensional MHD equations in terms of one directional derivative of the pressure
    Gala, Sadek
    Guo, Zhengguang
    Ragusa, Maria Alessandra
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 70 (12) : 3057 - 3061
  • [39] THE ANISOTROPIC INTEGRABILITY LOGARITHMIC REGULARITY CRITERION FOR THE 3D MHD EQUATIONS
    Alghamdi, Ahmad Mohammad
    Gala, Sadek
    Qian, Chenyin
    Ragusa, Maria Alessandra
    ELECTRONIC RESEARCH ARCHIVE, 2020, 28 (01): : 183 - 193
  • [40] Logarithmically improved regularity criteria for the 3D magnetohydrodynamic equations
    Zhang, Honglin
    Li, Li
    Zhang, Qingning
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (18) : 14417 - 14430