The linear arboricity of planar graphs with maximum degree at least 5

被引:4
作者
Chen, Hong-Yu [2 ]
Qi, Jian-Ming [1 ]
机构
[1] Shanghai Dianji Univ, Dept Math & Phys, Shanghai 201306, Peoples R China
[2] Shanghai Inst Technol, Sch Sci, Shanghai 201418, Peoples R China
基金
中国国家自然科学基金;
关键词
Combinatorial problems; Planar graph; Linear arboricity; Cycle; PACKING;
D O I
10.1016/j.ipl.2012.06.007
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Let G be a planar graph with maximum degree Delta(G) >= 5. It is proved that la(G) = inverted right perpendicular Delta(G)/2inverted left perpendicular if G has no intersecting 4-cycles and intersecting 5-cycles. (c) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:767 / 771
页数:5
相关论文
共 18 条
[1]  
Akiyama J., 1980, Mathematica Slovaca, V30, P405
[2]   COVERING AND PACKING IN GRAPHS .4. LINEAR ARBORICITY [J].
AKIYAMA, J ;
EXOO, G ;
HARARY, F .
NETWORKS, 1981, 11 (01) :69-72
[3]  
Bondy J. A., 1976, Graph theory with applications
[4]  
Chen H.Y., GRAPHS COMB IN PRESS
[5]  
Chen H.Y., UTIL MATH IN PRESS
[6]   A Planar linear arboricity conjecture [J].
Cygan, Marek ;
Hou, Jian-Feng ;
Kowalik, Lukasz ;
Luzar, Borut ;
Wu, Jian-Liang .
JOURNAL OF GRAPH THEORY, 2012, 69 (04) :403-425
[7]   THE LINEAR ARBORICITY OF SOME REGULAR GRAPHS [J].
ENOMOTO, H ;
PEROCHE, B .
JOURNAL OF GRAPH THEORY, 1984, 8 (02) :309-324
[8]  
Gulden F., 1986, Mathematica Slovaca, V36, P225
[9]   COVERING AND PACKING IN GRAPHS, .1. [J].
HARARY, F .
ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1970, 175 (01) :198-&
[10]  
Jianliang Wu, 2002, Journal of Systems Science and Complexity, V15, P372