Herringbone nanofiber CVD synthesis and high pressure hydrogen adsorption performance analysis by molecular modelling

被引:6
作者
Beyaz, S. K. [1 ]
Lamari, F. Darkrim [2 ]
Weinberger, B. P. [2 ]
Gadelle, P. [3 ]
Firlej, L. [4 ]
Bernier, P. [4 ]
机构
[1] Kocaeli Univ, Fac Arts & Sci, Dept Chem, TR-41380 Umuttepe Yerleskesi, Izmit, Turkey
[2] Univ Paris 13, LIMHP, CNRS, Inst Galilee,UPR1311, F-93430 Villetaneuse, France
[3] ENSEEG, LTPCM, F-38402 St Martin Dheres, France
[4] Univ Montpellier 2, LCVN, UMR 5587, CC 26, F-34095 Montpellier 5, France
关键词
Hydrogen; Storage; Adsorption; Material characterization; Molecular modelling; Nanofiber; Surface modification; MONTE-CARLO SIMULATIONS; ACTIVATED CARBONS; STORAGE; PHYSISORPTION; BEHAVIOR;
D O I
10.1016/j.ijhydene.2008.11.025
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In order to interpret adsorption results of hydrogen storage by adsorption in graphite nanofiber (GNF) materials at molecular scale and to propose optimized structures of graphitic materials, we have realized both experimental and numerical studies of gas adsorption in GNF. The porous materials have been synthesized by CVD method. The adsorption experiments were performed at 293 K by a volumetric method at high pressure until 40 MPa. We completed the surface reactivity analysis by performing structural characterizations of the samples using different structural techniques and numerical modelling computed in the grand canonical Gibbs ensemble. Within the cell, stacks of plans of graphite are arranged periodically using boundary conditions. The present numerical approach enables to interpret the results based on the solid-gas molecular interactions reactivity analysis. (c) 2008 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1965 / 1970
页数:6
相关论文
共 25 条
[1]   Hydrogen desorption and adsorption measurements on graphite nanofibers [J].
Ahn, CC ;
Ye, Y ;
Ratnakumar, BV ;
Witham, C ;
Bowman, RC ;
Fultz, B .
APPLIED PHYSICS LETTERS, 1998, 73 (23) :3378-3380
[2]   Storage of hydrogen by physisorption on carbon and nanostructured materials [J].
Benard, Pierre ;
Chahine, Richard .
SCRIPTA MATERIALIA, 2007, 56 (10) :803-808
[3]   Hydrogen storage in carbon nanotubes [J].
Cheng, HM ;
Yang, QH ;
Liu, C .
CARBON, 2001, 39 (10) :1447-1454
[4]   Monte Carlo simulations of nitrogen and hydrogen physisorption at high pressures and room temperature. Comparison with experiments [J].
Darkrim, F ;
Vermesse, J ;
Malbrunot, P ;
Levesque, D .
JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (08) :4020-4027
[5]   Review of hydrogen storage by adsorption in carbon nanotubes [J].
Darkrim Lamari, F ;
Malbrunot, P ;
Tartaglia, GP .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2002, 27 (02) :193-202
[6]   Hydrogen storage in activated carbons and activated carbon fibers [J].
de la Casa-Lillo, MA ;
Lamari-Darkrim, F ;
Cazorla-Amorós, D ;
Linares-Solano, A .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (42) :10930-10934
[7]   Improvement of hydrogen storage by adsorption using 2-D modeling of heat effects [J].
Delahaye, A ;
Aoufi, A ;
Gicquel, A ;
Pentchev, I .
AICHE JOURNAL, 2002, 48 (09) :2061-2073
[8]   Storage of hydrogen in single-walled carbon nanotubes [J].
Dillon, AC ;
Jones, KM ;
Bekkedahl, TA ;
Kiang, CH ;
Bethune, DS ;
Heben, MJ .
NATURE, 1997, 386 (6623) :377-379
[9]   Hydrogen uptake in vapor-grown carbon nanofibers [J].
Fan, YY ;
Liao, B ;
Liu, M ;
Wei, YL ;
Lu, MQ ;
Cheng, HM .
CARBON, 1999, 37 (10) :1649-1652
[10]   Synthesis and hydrogenation behaviour of graphitic nanofibres [J].
Gupta, BK ;
Srivastava, ON .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2000, 25 (09) :825-830