A Numerical Study of Blowup in the Harmonic Map Heat Flow Using the MMPDE Moving Mesh Method

被引:4
作者
Haynes, Ronald D. [1 ]
Huang, Weizhang [2 ]
Zegeling, Paul A. [3 ]
机构
[1] Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, Canada
[2] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
[3] Univ Utrecht, Dept Math, Utrecht, Netherlands
来源
NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS | 2013年 / 6卷 / 02期
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
Heat flow; harmonic map; blowup; moving mesh method; finite difference; FINITE-ELEMENT APPROXIMATIONS; GLOBAL EXISTENCE; WAVE MAPS; DISCRETIZATION; CONVERGENT; IMPLICIT; ASYMPTOTICS; EQUATIONS; SPHERES;
D O I
10.4208/nmtma.2013.1130nm
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The numerical solution of the harmonic heat map flow problems with blowup in finite or infinite time is considered using an adaptive moving mesh method. A properly chosen monitor function is derived so that the moving mesh method can be used to simulate blowup and produce accurate blowup profiles which agree with formal asymptotic analysis. Moreover, the moving mesh method has finite time blowup when the underlying continuous problem does. In situations where the continuous problem has infinite time blowup, the moving mesh method exhibits finite time blowup with a blowup time tending to infinity as the number of mesh points increases. The inadequacy of a uniform mesh solution is clearly demonstrated.
引用
收藏
页码:364 / 383
页数:20
相关论文
共 38 条
  • [1] [Anonymous], 2001, Ann. Mat. Pura Appl.
  • [2] Finite element approximations of harmonic map heat flows and wave maps into spheres of nonconstant radii
    Banas, L'ubomir
    Prohl, Andreas
    Schaetzle, Reiner
    [J]. NUMERISCHE MATHEMATIK, 2010, 115 (03) : 395 - 432
  • [3] A convergent implicit finite element discretization of the Maxwell-Landau-Lifshitz-Gilbert equation
    Banas, L'ubomir
    Bartels, Soeren
    Prohl, Andreas
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (03) : 1399 - 1422
  • [4] Blowup in diffusion equations: A survey
    Bandle, C
    Brunner, H
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 97 (1-2) : 3 - 22
  • [5] A convergent and constraint-preserving finite element method for the p-harmonic flow into spheres
    Barrett, John W.
    Bartels, Soren
    Feng, Xiaobing
    Prohl, Andreas
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (03) : 905 - 927
  • [6] Convergence of an implicit, constraint preserving finite element discretization of p-harmonic heat flow into spheres
    Bartels, Soeren
    Prohl, Andreas
    [J]. NUMERISCHE MATHEMATIK, 2008, 109 (04) : 489 - 507
  • [7] FINITE ELEMENT APPROXIMATIONS OF WAVE MAPS INTO SPHERES
    Bartels, Soeren
    Feng, Xiaobing
    Prohl, Andreas
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 46 (01) : 61 - 87
  • [8] Bartels S, 2010, MATH COMPUT, V79, P1263, DOI 10.1090/S0025-5718-09-02300-X
  • [9] CONVERGENT DISCRETIZATION OF HEAT AND WAVE MAP FLOWS TO SPHERES USING APPROXIMATE DISCRETE LAGRANGE MULTIPLIERS
    Bartels, Soeren
    Lubich, Christian
    Prohl, Andreas
    [J]. MATHEMATICS OF COMPUTATION, 2009, 78 (267) : 1269 - 1292
  • [10] Bartels S, 2009, J COMPUT MATH, V27, P170