Hierarchical core-shell α-Fe2O3@C nanotubes as a high-rate and long-life anode for advanced lithium ion batteries

被引:57
作者
Gu, Xin [1 ]
Chen, Liang [1 ]
Liu, Shuo [1 ]
Xu, Huayun [1 ]
Yang, Jian [1 ]
Qian, Yitai [1 ,2 ]
机构
[1] Shandong Univ, Sch Chem & Chem Engn, Minist Educ, Key Lab Colloid & Interface Chem, Jinan 250100, Peoples R China
[2] Univ Sci & Technol China, Dept Chem, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Peoples R China
关键词
ELECTROCHEMICAL PERFORMANCE; HOLLOW SPHERES; STORAGE PROPERTIES; GAS SENSOR; NANOSTRUCTURES; NANOPARTICLES; NANORODS; GROWTH; STRATEGY; ARRAYS;
D O I
10.1039/c3ta14649a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
High-performance anode materials in lithium ion batteries greatly rely on the elaborate control of their size, shape, structure and surface. However, it is difficult to assemble all of the controls within one particle, due to difficulties in their synthesis. Here, hierarchical carbon-coated alpha-Fe2O3 nanotubes are prepared by a facile hydrothermal reaction between branched MnO2/Fe2O3 nanorods and glucose. The resulting nanotubes realize all these controls in one particle in terms of their nanoscale size, one-dimensional shape, hollow structure, hierarchical surface and carbon coating. Meanwhile, the thickness of the carbon layer could be easily controlled by the ratio between the different reactants. Electrochemical measurements show that the core-shell nanotubes with the thinnest carbon layer give the best cycling and rate performances. They deliver a specific capacity of 1173 mA h g(-1) after 100 cycles at a current density of 0.2 A g(-1), or 1012 mA h g(-1) after 300 cycles at 1 A g(-1). Even after 1000 cycles at a current density of 4 A g(-1), the specific capacity could be still kept at 482 mA h g(-1). The excellent lithium-storage performance could be attributed to the well-designed controls in this nanocomposite and a thin carbon layer, which increases the electron conductivity of the electrode and simultaneously keeps the carbon content lower.
引用
收藏
页码:3439 / 3444
页数:6
相关论文
共 45 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   Ferrocene as precursor for carbon-coated α-Fe2O3 nano-particles for rechargeable lithium batteries [J].
Brandt, A. ;
Balducci, A. .
JOURNAL OF POWER SOURCES, 2013, 230 :44-49
[3]   1D hollow α-Fe2O3 electrospun nanofibers as high performance anode material for lithium ion batteries [J].
Chaudhari, Sudeshna ;
Srinivasan, Madhavi .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (43) :23049-23056
[4]   α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications [J].
Chen, J ;
Xu, LN ;
Li, WY ;
Gou, XL .
ADVANCED MATERIALS, 2005, 17 (05) :582-+
[5]   A comparative study of lithium-storage performances of hematite: Nanotubes vs. nanorods [J].
Chen, Liang ;
Xu, Huayun ;
Li, Li'e ;
Wu, Fangfang ;
Yang, Jian ;
Qian, Yitai .
JOURNAL OF POWER SOURCES, 2014, 245 :429-435
[6]   Controlled Growth of Porous α-Fe2O3 Branches on β-MnO2 Nanorods for Excellent Performance in Lithium-Ion Batteries [J].
Gu, Xin ;
Chen, Liang ;
Ju, Zhicheng ;
Xu, Huayun ;
Yang, Jian ;
Qian, Yitai .
ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (32) :4049-4056
[7]   Nanoengineered Polypyrrole-Coated Fe2O3@C Multifunctional Composites with an Improved Cycle Stability as Lithium-Ion Anodes [J].
Han, Fei ;
Li, Duo ;
Li, Wen-Cui ;
Lei, Cheng ;
Sun, Qiang ;
Lu, An-Hui .
ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (13) :1692-1700
[8]   Preparation and electrochemical performance of flower-like hematite for lithium-ion batteries [J].
Han, Yan ;
Wang, Yijing ;
Li, Li ;
Wang, Yaping ;
Jiao, Lifang ;
Yuan, Huatang ;
Liu, Shuangxi .
ELECTROCHIMICA ACTA, 2011, 56 (09) :3175-3181
[9]   Hierarchical Hollow Spheres of Fe2O3@Polyaniline for Lithium Ion Battery Anodes [J].
Jeong, Jae-Min ;
Choi, Bong Gill ;
Lee, Soon Chang ;
Lee, Kyoung G. ;
Chang, Sung-Jin ;
Han, Young-Kyu ;
Lee, Young Boo ;
Lee, Hyun Uk ;
Kwon, Soonjo ;
Lee, Gaehang ;
Lee, Chang-Soo ;
Huh, Yun Suk .
ADVANCED MATERIALS, 2013, 25 (43) :6250-6255
[10]   Recent Advances in Metal Oxide-based Electrode Architecture Design for Electrochemical Energy Storage [J].
Jiang, Jian ;
Li, Yuanyuan ;
Liu, Jinping ;
Huang, Xintang ;
Yuan, Changzhou ;
Lou, Xiong Wen .
ADVANCED MATERIALS, 2012, 24 (38) :5166-5180